1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use crate::operation::create_deployment_strategy::_create_deployment_strategy_output::CreateDeploymentStrategyOutputBuilder;

pub use crate::operation::create_deployment_strategy::_create_deployment_strategy_input::CreateDeploymentStrategyInputBuilder;

impl CreateDeploymentStrategyInputBuilder {
    /// Sends a request with this input using the given client.
    pub async fn send_with(
        self,
        client: &crate::Client,
    ) -> ::std::result::Result<
        crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let mut fluent_builder = client.create_deployment_strategy();
        fluent_builder.inner = self;
        fluent_builder.send().await
    }
}
/// Fluent builder constructing a request to `CreateDeploymentStrategy`.
///
/// <p>Creates a deployment strategy that defines important criteria for rolling out your configuration to the designated targets. A deployment strategy includes the overall duration required, a percentage of targets to receive the deployment during each interval, an algorithm that defines how percentage grows, and bake time.</p>
#[derive(::std::clone::Clone, ::std::fmt::Debug)]
pub struct CreateDeploymentStrategyFluentBuilder {
    handle: ::std::sync::Arc<crate::client::Handle>,
    inner: crate::operation::create_deployment_strategy::builders::CreateDeploymentStrategyInputBuilder,
    config_override: ::std::option::Option<crate::config::Builder>,
}
impl
    crate::client::customize::internal::CustomizableSend<
        crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
        crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
    > for CreateDeploymentStrategyFluentBuilder
{
    fn send(
        self,
        config_override: crate::config::Builder,
    ) -> crate::client::customize::internal::BoxFuture<
        crate::client::customize::internal::SendResult<
            crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
            crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
        >,
    > {
        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
    }
}
impl CreateDeploymentStrategyFluentBuilder {
    /// Creates a new `CreateDeploymentStrategy`.
    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
        Self {
            handle,
            inner: ::std::default::Default::default(),
            config_override: ::std::option::Option::None,
        }
    }
    /// Access the CreateDeploymentStrategy as a reference.
    pub fn as_input(&self) -> &crate::operation::create_deployment_strategy::builders::CreateDeploymentStrategyInputBuilder {
        &self.inner
    }
    /// Sends the request and returns the response.
    ///
    /// If an error occurs, an `SdkError` will be returned with additional details that
    /// can be matched against.
    ///
    /// By default, any retryable failures will be retried twice. Retry behavior
    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
    /// set when configuring the client.
    pub async fn send(
        self,
    ) -> ::std::result::Result<
        crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
        ::aws_smithy_runtime_api::client::result::SdkError<
            crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
        >,
    > {
        let input = self
            .inner
            .build()
            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
        let runtime_plugins = crate::operation::create_deployment_strategy::CreateDeploymentStrategy::operation_runtime_plugins(
            self.handle.runtime_plugins.clone(),
            &self.handle.conf,
            self.config_override,
        );
        crate::operation::create_deployment_strategy::CreateDeploymentStrategy::orchestrate(&runtime_plugins, input).await
    }

    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
    pub fn customize(
        self,
    ) -> crate::client::customize::CustomizableOperation<
        crate::operation::create_deployment_strategy::CreateDeploymentStrategyOutput,
        crate::operation::create_deployment_strategy::CreateDeploymentStrategyError,
        Self,
    > {
        crate::client::customize::CustomizableOperation::new(self)
    }
    pub(crate) fn config_override(mut self, config_override: impl Into<crate::config::Builder>) -> Self {
        self.set_config_override(Some(config_override.into()));
        self
    }

    pub(crate) fn set_config_override(&mut self, config_override: Option<crate::config::Builder>) -> &mut Self {
        self.config_override = config_override;
        self
    }
    /// <p>A name for the deployment strategy.</p>
    pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.name(input.into());
        self
    }
    /// <p>A name for the deployment strategy.</p>
    pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_name(input);
        self
    }
    /// <p>A name for the deployment strategy.</p>
    pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_name()
    }
    /// <p>A description of the deployment strategy.</p>
    pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.description(input.into());
        self
    }
    /// <p>A description of the deployment strategy.</p>
    pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.inner = self.inner.set_description(input);
        self
    }
    /// <p>A description of the deployment strategy.</p>
    pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
        self.inner.get_description()
    }
    /// <p>Total amount of time for a deployment to last.</p>
    pub fn deployment_duration_in_minutes(mut self, input: i32) -> Self {
        self.inner = self.inner.deployment_duration_in_minutes(input);
        self
    }
    /// <p>Total amount of time for a deployment to last.</p>
    pub fn set_deployment_duration_in_minutes(mut self, input: ::std::option::Option<i32>) -> Self {
        self.inner = self.inner.set_deployment_duration_in_minutes(input);
        self
    }
    /// <p>Total amount of time for a deployment to last.</p>
    pub fn get_deployment_duration_in_minutes(&self) -> &::std::option::Option<i32> {
        self.inner.get_deployment_duration_in_minutes()
    }
    /// <p>Specifies the amount of time AppConfig monitors for Amazon CloudWatch alarms after the configuration has been deployed to 100% of its targets, before considering the deployment to be complete. If an alarm is triggered during this time, AppConfig rolls back the deployment. You must configure permissions for AppConfig to roll back based on CloudWatch alarms. For more information, see <a href="https://docs.aws.amazon.com/appconfig/latest/userguide/getting-started-with-appconfig-cloudwatch-alarms-permissions.html">Configuring permissions for rollback based on Amazon CloudWatch alarms</a> in the <i>AppConfig User Guide</i>.</p>
    pub fn final_bake_time_in_minutes(mut self, input: i32) -> Self {
        self.inner = self.inner.final_bake_time_in_minutes(input);
        self
    }
    /// <p>Specifies the amount of time AppConfig monitors for Amazon CloudWatch alarms after the configuration has been deployed to 100% of its targets, before considering the deployment to be complete. If an alarm is triggered during this time, AppConfig rolls back the deployment. You must configure permissions for AppConfig to roll back based on CloudWatch alarms. For more information, see <a href="https://docs.aws.amazon.com/appconfig/latest/userguide/getting-started-with-appconfig-cloudwatch-alarms-permissions.html">Configuring permissions for rollback based on Amazon CloudWatch alarms</a> in the <i>AppConfig User Guide</i>.</p>
    pub fn set_final_bake_time_in_minutes(mut self, input: ::std::option::Option<i32>) -> Self {
        self.inner = self.inner.set_final_bake_time_in_minutes(input);
        self
    }
    /// <p>Specifies the amount of time AppConfig monitors for Amazon CloudWatch alarms after the configuration has been deployed to 100% of its targets, before considering the deployment to be complete. If an alarm is triggered during this time, AppConfig rolls back the deployment. You must configure permissions for AppConfig to roll back based on CloudWatch alarms. For more information, see <a href="https://docs.aws.amazon.com/appconfig/latest/userguide/getting-started-with-appconfig-cloudwatch-alarms-permissions.html">Configuring permissions for rollback based on Amazon CloudWatch alarms</a> in the <i>AppConfig User Guide</i>.</p>
    pub fn get_final_bake_time_in_minutes(&self) -> &::std::option::Option<i32> {
        self.inner.get_final_bake_time_in_minutes()
    }
    /// <p>The percentage of targets to receive a deployed configuration during each interval.</p>
    pub fn growth_factor(mut self, input: f32) -> Self {
        self.inner = self.inner.growth_factor(input);
        self
    }
    /// <p>The percentage of targets to receive a deployed configuration during each interval.</p>
    pub fn set_growth_factor(mut self, input: ::std::option::Option<f32>) -> Self {
        self.inner = self.inner.set_growth_factor(input);
        self
    }
    /// <p>The percentage of targets to receive a deployed configuration during each interval.</p>
    pub fn get_growth_factor(&self) -> &::std::option::Option<f32> {
        self.inner.get_growth_factor()
    }
    /// <p>The algorithm used to define how percentage grows over time. AppConfig supports the following growth types:</p>
    /// <p> <b>Linear</b>: For this type, AppConfig processes the deployment by dividing the total number of targets by the value specified for <code>Step percentage</code>. For example, a linear deployment that uses a <code>Step percentage</code> of 10 deploys the configuration to 10 percent of the hosts. After those deployments are complete, the system deploys the configuration to the next 10 percent. This continues until 100% of the targets have successfully received the configuration.</p>
    /// <p> <b>Exponential</b>: For this type, AppConfig processes the deployment exponentially using the following formula: <code>G*(2^N)</code>. In this formula, <code>G</code> is the growth factor specified by the user and <code>N</code> is the number of steps until the configuration is deployed to all targets. For example, if you specify a growth factor of 2, then the system rolls out the configuration as follows:</p>
    /// <p> <code>2*(2^0)</code> </p>
    /// <p> <code>2*(2^1)</code> </p>
    /// <p> <code>2*(2^2)</code> </p>
    /// <p>Expressed numerically, the deployment rolls out as follows: 2% of the targets, 4% of the targets, 8% of the targets, and continues until the configuration has been deployed to all targets.</p>
    pub fn growth_type(mut self, input: crate::types::GrowthType) -> Self {
        self.inner = self.inner.growth_type(input);
        self
    }
    /// <p>The algorithm used to define how percentage grows over time. AppConfig supports the following growth types:</p>
    /// <p> <b>Linear</b>: For this type, AppConfig processes the deployment by dividing the total number of targets by the value specified for <code>Step percentage</code>. For example, a linear deployment that uses a <code>Step percentage</code> of 10 deploys the configuration to 10 percent of the hosts. After those deployments are complete, the system deploys the configuration to the next 10 percent. This continues until 100% of the targets have successfully received the configuration.</p>
    /// <p> <b>Exponential</b>: For this type, AppConfig processes the deployment exponentially using the following formula: <code>G*(2^N)</code>. In this formula, <code>G</code> is the growth factor specified by the user and <code>N</code> is the number of steps until the configuration is deployed to all targets. For example, if you specify a growth factor of 2, then the system rolls out the configuration as follows:</p>
    /// <p> <code>2*(2^0)</code> </p>
    /// <p> <code>2*(2^1)</code> </p>
    /// <p> <code>2*(2^2)</code> </p>
    /// <p>Expressed numerically, the deployment rolls out as follows: 2% of the targets, 4% of the targets, 8% of the targets, and continues until the configuration has been deployed to all targets.</p>
    pub fn set_growth_type(mut self, input: ::std::option::Option<crate::types::GrowthType>) -> Self {
        self.inner = self.inner.set_growth_type(input);
        self
    }
    /// <p>The algorithm used to define how percentage grows over time. AppConfig supports the following growth types:</p>
    /// <p> <b>Linear</b>: For this type, AppConfig processes the deployment by dividing the total number of targets by the value specified for <code>Step percentage</code>. For example, a linear deployment that uses a <code>Step percentage</code> of 10 deploys the configuration to 10 percent of the hosts. After those deployments are complete, the system deploys the configuration to the next 10 percent. This continues until 100% of the targets have successfully received the configuration.</p>
    /// <p> <b>Exponential</b>: For this type, AppConfig processes the deployment exponentially using the following formula: <code>G*(2^N)</code>. In this formula, <code>G</code> is the growth factor specified by the user and <code>N</code> is the number of steps until the configuration is deployed to all targets. For example, if you specify a growth factor of 2, then the system rolls out the configuration as follows:</p>
    /// <p> <code>2*(2^0)</code> </p>
    /// <p> <code>2*(2^1)</code> </p>
    /// <p> <code>2*(2^2)</code> </p>
    /// <p>Expressed numerically, the deployment rolls out as follows: 2% of the targets, 4% of the targets, 8% of the targets, and continues until the configuration has been deployed to all targets.</p>
    pub fn get_growth_type(&self) -> &::std::option::Option<crate::types::GrowthType> {
        self.inner.get_growth_type()
    }
    /// <p>Save the deployment strategy to a Systems Manager (SSM) document.</p>
    pub fn replicate_to(mut self, input: crate::types::ReplicateTo) -> Self {
        self.inner = self.inner.replicate_to(input);
        self
    }
    /// <p>Save the deployment strategy to a Systems Manager (SSM) document.</p>
    pub fn set_replicate_to(mut self, input: ::std::option::Option<crate::types::ReplicateTo>) -> Self {
        self.inner = self.inner.set_replicate_to(input);
        self
    }
    /// <p>Save the deployment strategy to a Systems Manager (SSM) document.</p>
    pub fn get_replicate_to(&self) -> &::std::option::Option<crate::types::ReplicateTo> {
        self.inner.get_replicate_to()
    }
    /// Adds a key-value pair to `Tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>Metadata to assign to the deployment strategy. Tags help organize and categorize your AppConfig resources. Each tag consists of a key and an optional value, both of which you define.</p>
    pub fn tags(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.inner = self.inner.tags(k.into(), v.into());
        self
    }
    /// <p>Metadata to assign to the deployment strategy. Tags help organize and categorize your AppConfig resources. Each tag consists of a key and an optional value, both of which you define.</p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
        self.inner = self.inner.set_tags(input);
        self
    }
    /// <p>Metadata to assign to the deployment strategy. Tags help organize and categorize your AppConfig resources. Each tag consists of a key and an optional value, both of which you define.</p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        self.inner.get_tags()
    }
}