1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
use alloc::{string::String, vec::Vec};
use core::{cmp, num::NonZeroUsize};
use awint_core::{Bits, InlAwi};
use crate::{
awint_internals::{SerdeError::*, *},
ExtAwi,
};
/// # non-`const` string representation conversion
impl ExtAwi {
// note: we use the name `..._to_vec` instead of `..._to_bytes` to avoid name
// collisions and confusion with the literal byte values instead of chars.
/// Creates a `Vec<u8>` representing `bits` (sign indicators, prefixes, and
/// postfixes not included). This function performs allocation. This is
/// a wrapper around [awint_core::Bits::to_bytes_radix] that truncates
/// leading zeros. An additional `min_chars` specifies the minimum
/// number of characters that should exist. `min_chars` specifies the
/// minimum number of chars in the integer part, inserting leading '0's if
/// there are not enough chars, just like Rust's built in `{:0d}`
/// formatting. Note that an empty vector will be returned if
/// `min_chars == 0 && bits.is_zero()`.
///
/// # Errors
///
/// This can only return an error if `radix` is not in the range 2..=36 or
/// if resource exhaustion occurs.
pub fn bits_to_vec_radix(
bits: &Bits,
signed: bool,
radix: u8,
upper: bool,
min_chars: usize,
) -> Result<Vec<u8>, SerdeError> {
let mut dst = alloc::vec![0;
cmp::max(
min_chars,
chars_upper_bound(bits.bw().wrapping_sub(bits.lz()), radix)?
)
];
let mut pad = ExtAwi::zero(bits.nzbw());
// note: do not unwrap in case of exhaustion
bits.to_bytes_radix(signed, &mut dst, radix, upper, pad.const_as_mut())?;
let len = dst.len();
for i in 0..len {
if dst[i] != b'0' {
// most significant digit
let msd = i;
// move downwards to get rid of leading zeros
dst.copy_within(msd..len, 0);
// this should be done for the sake of capacity determinism and for memory
// limited contexts
for _ in 0..msd {
dst.pop();
}
dst.shrink_to_fit();
break
}
if i == len.wrapping_sub(min_chars) {
// terminate early to keep the minimum number of chars
// move the digits which are written in big endian form downwards to get rid of
// leading zeros
dst.copy_within(i..len, 0);
for _ in 0..i {
dst.pop();
}
dst.shrink_to_fit();
break
}
if (i + 1) == len {
// all zeros
for _ in 0..len {
dst.pop();
}
dst.shrink_to_fit();
break
}
}
Ok(dst)
}
/// Creates a string representing `bits`. This function performs allocation.
/// This does the same thing as [ExtAwi::bits_to_vec_radix] but with a
/// `String`.
pub fn bits_to_string_radix(
bits: &Bits,
signed: bool,
radix: u8,
upper: bool,
min_chars: usize,
) -> Result<String, SerdeError> {
// It is impossible for the `from_utf8` conversion to panic because
// `to_vec_radix` sets all chars to valid utf8
Ok(String::from_utf8(ExtAwi::bits_to_vec_radix(
bits, signed, radix, upper, min_chars,
)?)
.unwrap())
}
/// Creates an `ExtAwi` representing the given arguments. This function
/// performs allocation. This is a wrapper around
/// [awint_core::Bits::bytes_radix_] that zero or sign resizes the
/// result to match `bw`.
///
/// # Errors
///
/// See the error conditions of [Bits::bytes_radix_]. Note that `-` is
/// an invalid character even though `to_vec_radix` can return `-`. This
/// is because we need to handle both unsigned and signed integer
/// inputs, specified only by `sign`. If the input is a negative signed
/// integer representation with `-` appended to the front, the subslice
/// `src[1..]` can be taken and `sign` can be set to `Some(true)`.
pub fn from_bytes_radix(
sign: Option<bool>,
src: &[u8],
radix: u8,
bw: NonZeroUsize,
) -> Result<ExtAwi, SerdeError> {
let tmp_bw = crate::awint_internals::bw(
(sign.is_some() as usize)
.checked_add(bits_upper_bound(src.len(), radix)?)
.ok_or(Overflow)?,
);
let mut awi = ExtAwi::zero(tmp_bw);
let mut pad0 = ExtAwi::zero(tmp_bw);
let mut pad1 = ExtAwi::zero(tmp_bw);
let tmp = awi.const_as_mut();
// note: do not unwrap in case of exhaustion
tmp.bytes_radix_(sign, src, radix, pad0.const_as_mut(), pad1.const_as_mut())?;
let mut final_awi = ExtAwi::zero(bw);
let x = final_awi.const_as_mut();
if sign.is_none() {
if x.zero_resize_(tmp) {
return Err(Overflow)
}
} else if x.sign_resize_(tmp) {
return Err(Overflow)
}
Ok(final_awi)
}
/// Creates an `ExtAwi` representing the given arguments. This does the same
/// thing as [ExtAwi::from_bytes_radix] but with an `&str`.
pub fn from_str_radix(
sign: Option<bool>,
str: &str,
radix: u8,
bw: NonZeroUsize,
) -> Result<ExtAwi, SerdeError> {
ExtAwi::from_bytes_radix(sign, str.as_bytes(), radix, bw)
}
// note: these functions are not under `FP` because `FP` is a generic struct
// agnostic to `ExtAwi`
/// Creates an `ExtAwi` representing the given arguments. This function
/// performs allocation. In addition to the arguments and semantics from
/// [ExtAwi::from_bytes_radix], this function includes the ability to deal
/// with general fixed point integer deserialization. `src` is now split
/// into separate `integer` and `fraction` parts. An exponent `exp` further
/// multiplies the numerical value by `radix^exp`. `fp` is the location
/// of the fixed point in the output representation of the numerical
/// value (e.x. for a plain integer `fp == 0`). `fp` can be negative or
/// greater than the bitwidth.
///
/// This function uses a single rigorous round-to-even that occurs after
/// the exponent and fixed point multiplier are applied and before any
/// numerical information is lost.
///
/// See [crate::FP::to_vec_general] for the inverse of this function.
///
/// # Errors
///
/// See the error conditions of [ExtAwi::from_bytes_radix]. The precision
/// can now be arbitrarily large (any overflow in the low numerical
/// significance direction will be rounded), but overflow can still happen
/// in the more significant direction. Empty strings are interpreted as a
/// zero value.
pub fn from_bytes_general(
sign: Option<bool>,
integer: &[u8],
fraction: &[u8],
exp: isize,
radix: u8,
bw: NonZeroUsize,
fp: isize,
) -> Result<ExtAwi, SerdeError> {
let mut i_len = 0usize;
for c in integer {
if *c != b'_' {
i_len += 1;
}
}
let mut f_len = 0usize;
for c in fraction {
if *c != b'_' {
f_len += 1;
}
}
let exp_sub_f_len = exp
.checked_sub(isize::try_from(f_len).ok().ok_or(Overflow)?)
.ok_or(Overflow)?;
// The problem we encounter is that the only way to do the correct banker's
// rounding in the general case is to consider the integer part, the entire
// fractional part, fixed point multiplier, and exponent all at once.
//
// `((i_part * 2^fp) + (f_part * 2^fp * radix^f_len)) * radix^exp`
// <=> `((i * radix^f_len) + f) * r^(exp - f_len) * 2^fp`
// TODO we can optimize away leading and trailing '0's
// this width includes space for everything
let tmp_bw = NonZeroUsize::new(
// the +1 is for the shift left on `rem` and for possible `quo` increment overflow
(sign.is_some() as usize)
.checked_add(bits_upper_bound(
i_len
.checked_add(f_len)
.ok_or(Overflow)?
.checked_add(exp_sub_f_len.unsigned_abs())
.ok_or(Overflow)?,
radix,
)?)
.ok_or(Overflow)?
.checked_add(fp.unsigned_abs())
.ok_or(Overflow)?
.checked_add(1)
.ok_or(Overflow)?,
)
.unwrap();
let mut numerator = if i_len > 0 {
// note: do not unwrap in case of exhaustion
let mut i_part = ExtAwi::from_bytes_radix(None, integer, radix, tmp_bw)?;
// multiply by `radix^f_len` here
for _ in 0..f_len {
i_part.const_as_mut().digit_cin_mul_(0, Digit::from(radix));
}
i_part
} else {
ExtAwi::zero(tmp_bw)
};
let num = numerator.const_as_mut();
if f_len > 0 {
let mut f_part = ExtAwi::from_bytes_radix(
None, // avoids overflow corner case
fraction, radix, tmp_bw,
)?;
num.add_(f_part.const_as_mut()).unwrap();
}
let mut denominator = ExtAwi::uone(tmp_bw);
let den = denominator.const_as_mut();
if exp_sub_f_len < 0 {
for _ in 0..exp_sub_f_len.unsigned_abs() {
den.digit_cin_mul_(0, Digit::from(radix));
}
} else {
for _ in 0..exp_sub_f_len.unsigned_abs() {
num.digit_cin_mul_(0, Digit::from(radix));
}
}
if fp < 0 {
den.shl_(fp.unsigned_abs()).unwrap();
} else {
num.shl_(fp.unsigned_abs()).unwrap();
}
let mut quotient = ExtAwi::zero(tmp_bw);
let quo = quotient.const_as_mut();
let mut remainder = ExtAwi::zero(tmp_bw);
let rem = remainder.const_as_mut();
Bits::udivide(quo, rem, num, den).unwrap();
// The remainder `rem` is in the range `0..den`. We use banker's rounding to
// choose when to round up `quo`.
rem.shl_(1).unwrap();
if den.ult(rem).unwrap() {
// past the halfway point, round up
quo.inc_(true);
} else if den == rem {
// round to even
let odd = quo.lsb();
quo.inc_(odd);
} // else truncated is correct
if let Some(true) = sign {
quo.neg_(true);
}
let mut res = ExtAwi::zero(bw);
let x = res.const_as_mut();
if sign.is_none() {
if x.zero_resize_(quo) {
return Err(Overflow)
}
} else if x.sign_resize_(quo) {
return Err(Overflow)
}
Ok(res)
}
/// Creates an `ExtAwi` representing the given arguments. This does the same
/// thing as [ExtAwi::from_bytes_general] but with `&str`s.
pub fn from_str_general(
sign: Option<bool>,
integer: &str,
fraction: &str,
exp: isize,
radix: u8,
bw: NonZeroUsize,
fp: isize,
) -> Result<ExtAwi, SerdeError> {
ExtAwi::from_bytes_general(
sign,
integer.as_bytes(),
fraction.as_bytes(),
exp,
radix,
bw,
fp,
)
}
}
// TODO 0e-3_n123.456_i32f16 0xp-3_n123.456_i32f16 allow leading 'n'
// TODO leading 'r' for reversimals
// TODO default 0. shift for fixing very large fp problem, and fix perf
impl core::str::FromStr for ExtAwi {
type Err = SerdeError;
/// Creates an `ExtAwi` described by `s`. There are three modes of operation
/// which invoke [ExtAwi::from_str_radix] or [ExtAwi::from_str_general]
/// differently.
///
/// Note: there is currently a
/// [bug](https://github.com/rust-lang/rust/issues/108385) in Rust that
/// causes certain fixed point literals to fail to parse when attempting
/// to use them in the concatenation macros. In case of getting
/// "literal is not supported" errors, use `ExtAwi::from_str` directly.
///
/// Additionally, note that it is easy to cause resource exhaustion with
/// large bitwidths, exponents, or fixed points that can approach
/// `usize::MAX`. In a future version of `awint` we should have a guarded
/// function for helping with entering literals through things like UIs.
///
/// All valid inputs must begin with '0'-'9' or a '-' followed by '0'-'9'.
///
/// If only ' _ ', '0', and '1' chars are present, this function uses binary
/// mode. It will interpret the input as a binary string, the number of '0's
/// and '1's of which is the bitwidth (including leading '0's and excluding
/// ' _ 's). For example: 42 in binary is 101010. If "101010" is entered
/// into this function, it will return an `ExtAwi` with bitwidth 6 and
/// unsigned value 42. "0000101010" results in bitwidth 10 and unsigned
/// value 42. "1111_1111" results in bitwidth 8 and signed value -128 or
/// equivalently unsigned value 255.
///
/// In integer mode, a decimal bitwidth must be specified after a 'u'
/// (unsigned) or 'i' (signed) suffix. A prefix of "0b" specifies a binary
/// radix, "0o" specifies an octal radix, "0x" specifies hexadecimal,
/// otherwise a decimal radix is used. For example: "42u10" entered into
/// this function creates an `ExtAwi` with bitwidth 10 and unsigned
/// value 42. "-42i10" results in bitwidth 10 and signed value of -42.
/// "0xffff_ffffu32" results in bitwidth 32 and an unsigned value of
/// 0xffffffff (also 4294967295 in decimal and u32::MAX).
/// "0x1_0000_0000u32" results in an error with `SerdeError::Overflow`,
/// because it exceeds the maximum unsigned value for a 32 bit integer.
/// "123" results in `SerdeError::EmptyBitwidth`, because it is not in
/// binary mode and no bitwidth suffix has been supplied.
///
/// If, after the bitwidth, an 'f' char is present, fixed point mode is
/// activated. A decimal fixed point position must be specified after the
/// 'f' that tells where the fixed point will be in the resulting bits (see
/// [crate::FP] for more). If the most significant numerical bit would be
/// cut off, `SerdeError::Overflow` is returned.
///
/// Additionally, an exponent char 'e' (for non-hexadecimal radixes only) or
/// 'p' can be included after the integer or fraction parts but before the
/// bitwidth suffix. The exponent as typed uses the radix of the integer
/// part, and it is raised to the same radix when modifying the numerical
/// value. The exponent can only be negative for fixed point mode. For
/// example: "123e5u32" has numerical value 12300000. "123e-5u32" returns an
/// error since it is trying to use a negative exponent in integer mode.
/// "-0x1234.5678p-3i32f16" has a numerical value of -0x1234.5678 *
/// 0x10^-0x3 and uses [ExtAwi::from_bytes_general] to round-to-even to a 32
/// bit fixed point number with fixed point position 16. You probably want
/// to use underscores to make it clearer where different parts are, e.x.
/// "-0x1234.5678_p-3_i32_f16".
///
/// For all parts including the integer, fraction, exponent, bitwidth, and
/// fixed point parts, if their prefix char exists but there is not at least
/// one '0' for them, some kind of empty error is returned. For example:
/// "0xu8" should be "0x0u8". ".i8f0" should be "0.0i8f0". "1u32f" should be
/// "1u32f0".
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut sign = None;
let mut integer = None;
let mut fraction = None;
let mut exp = None;
let mut exp_negative = false;
let mut radix = None;
let bitwidth;
let mut fp = None;
let mut fp_negative = false;
let is_integral = |c: u8, radix: Option<u8>| {
let is_underscore = c == b'_';
let is_binary = (b'0' <= c) && (c <= b'1');
let is_octal = (b'0' <= c) && (c <= b'7');
let is_decimal = (b'0' <= c) && (c <= b'9');
let is_lowerhex = (b'a' <= c) && (c <= b'f');
let is_upperhex = (b'A' <= c) && (c <= b'F');
match radix {
// assuming binary or decimal
None => is_underscore || is_decimal,
Some(2) => is_underscore || is_binary,
Some(8) => is_underscore || is_octal,
Some(16) => is_underscore || is_decimal || is_lowerhex || is_upperhex,
_ => unreachable!(),
}
};
let is_empty_or_all_underscores = |s: &[u8]| {
let mut all_underscores = true;
for c in s {
if *c != b'_' {
all_underscores = false;
break
}
}
all_underscores
};
let s = s.as_bytes();
if s.is_empty() {
return Err(Empty)
}
let mut i = 0;
if s[i] == b'-' {
if s.len() < 2 {
return Err(Empty)
}
sign = Some(true);
i += 1;
}
if (s[i] == b'u') || (s[i] == b'i') {
// case that we want a better error for
return Err(EmptyInteger)
}
// first char after a possible '-' should always be '0'-'9'
if !((b'0' <= s[i]) && (s[i] <= b'9')) {
return Err(InvalidChar)
}
if (s[i] == b'0') && ((i + 1) < s.len()) {
if s[i + 1] == b'b' {
radix = Some(2);
i += 2;
} else if s[i + 1] == b'o' {
i += 2;
radix = Some(8);
} else if s[i + 1] == b'x' {
radix = Some(16);
i += 2;
}
// else it might be binary mode or decimal radix
}
if sign.is_none() && radix.is_none() {
// check for binary mode, we have prefix checks above and reverse iteration here
// to reduce checking time
let mut binary_mode = true;
let mut w = 0;
for c in s.iter().rev() {
let c = *c;
if !((c == b'_') || (c == b'0') || (c == b'1')) {
binary_mode = false;
break
}
if c != b'_' {
w += 1;
}
}
if binary_mode {
if let Some(w) = NonZeroUsize::new(w) {
return ExtAwi::from_bytes_radix(None, s, 2, w)
} else {
// there was '_' only
return Err(EmptyInteger)
}
}
}
// integer part, can be followed by '.' for fraction, 'e' or 'p' for exponent,
// or 'u' or 'i' for bitwidth
let integer_start = i;
let mut fraction_start = None;
let mut exp_start = None;
loop {
if i >= s.len() {
break
}
if !is_integral(s[i], radix) {
if s[i] == b'.' {
fraction_start = Some(i + 1);
} else if s[i] == b'u' {
if sign.is_some() {
return Err(NegativeUnsigned)
}
sign = None;
} else if s[i] == b'i' {
if sign.is_none() {
sign = Some(false);
}
} else if (s[i] == b'e') || (s[i] == b'p') {
exp_start = Some(i + 1);
} else {
return Err(InvalidChar)
}
integer = Some(&s[integer_start..i]);
i += 1;
break
}
i += 1;
}
// fraction part, can be followed by ' or 'p' for exponent, or 'u' or 'i' for
// bitwidth
if let Some(fraction_start) = fraction_start {
loop {
if i >= s.len() {
break
}
if !is_integral(s[i], radix) {
if s[i] == b'u' {
if sign.is_some() {
return Err(NegativeUnsigned)
}
sign = None;
} else if s[i] == b'i' {
if sign.is_none() {
sign = Some(false);
}
} else if (s[i] == b'e') || (s[i] == b'p') {
exp_start = Some(i + 1);
} else {
return Err(InvalidChar)
}
fraction = Some(&s[fraction_start..i]);
i += 1;
break
}
i += 1;
}
}
// exponent part, can be followed by 'u' or 'i' for bitwidth
if let Some(mut exp_start) = exp_start {
loop {
if i >= s.len() {
break
}
if !is_integral(s[i], radix) {
if s[i] == b'-' {
if exp_negative {
return Err(InvalidChar)
}
exp_negative = true;
exp_start += 1;
i += 1;
continue
} else if s[i] == b'u' {
if sign.is_some() {
return Err(NegativeUnsigned)
}
sign = None;
} else if s[i] == b'i' {
if sign.is_none() {
sign = Some(false);
}
} else {
return Err(InvalidChar)
}
exp = Some(&s[exp_start..i]);
i += 1;
break
}
i += 1;
}
}
// bitwidth part, can be followed by 'f' for fixed point
let bitwidth_start = i;
let mut fp_start = None;
loop {
if i >= s.len() {
bitwidth = Some(&s[bitwidth_start..i]);
break
}
if !is_integral(s[i], None) {
if s[i] == b'f' {
fp_start = Some(i + 1);
} else {
return Err(InvalidChar)
}
bitwidth = Some(&s[bitwidth_start..i]);
i += 1;
break
}
i += 1;
}
// fixed point part
if let Some(mut fp_start) = fp_start {
loop {
if i >= s.len() {
fp = Some(&s[fp_start..i]);
break
}
if !is_integral(s[i], None) {
if s[i] == b'-' {
if fp_negative {
return Err(InvalidChar)
}
fp_negative = true;
fp_start += 1;
i += 1;
continue
} else {
return Err(InvalidChar)
}
}
i += 1;
}
}
let radix = radix.unwrap_or(10);
if let Some(bitwidth) = bitwidth {
if is_empty_or_all_underscores(bitwidth) {
return Err(EmptyBitwidth)
}
let pad0 = &mut InlAwi::from_usize(0);
let pad1 = &mut InlAwi::from_usize(0);
let mut usize_awi = InlAwi::from_usize(0);
usize_awi.bytes_radix_(None, bitwidth, 10, pad0, pad1)?;
let w = if let Some(w) = NonZeroUsize::new(usize_awi.to_usize()) {
w
} else {
return Err(ZeroBitwidth)
};
if let Some(integer) = integer {
if is_empty_or_all_underscores(integer) {
return Err(EmptyInteger)
}
let exp = if let Some(exp) = exp {
if is_empty_or_all_underscores(exp) {
return Err(EmptyExponent)
}
usize_awi.bytes_radix_(Some(exp_negative), exp, radix, pad0, pad1)?;
usize_awi.to_isize()
} else {
0
};
if let Some(fp) = fp {
if is_empty_or_all_underscores(fp) {
return Err(EmptyFixedPoint)
}
// fixed point mode
usize_awi.bytes_radix_(Some(fp_negative), fp, 10, pad0, pad1)?;
let fp = usize_awi.to_isize();
let fraction = if let Some(fraction) = fraction {
if is_empty_or_all_underscores(fraction) {
return Err(EmptyFraction)
}
fraction
} else {
&[]
};
ExtAwi::from_bytes_general(sign, integer, fraction, exp, radix, w, fp)
} else {
// integer mode
if (exp < 0) || (fraction.is_some()) {
return Err(Fractional)
}
if exp > 0 {
// there are a lot of tricky edge cases, just use this
ExtAwi::from_bytes_general(sign, integer, &[], exp, radix, w, 0)
} else {
ExtAwi::from_bytes_radix(sign, integer, radix, w)
}
}
} else {
Err(EmptyInteger)
}
} else {
Err(EmptyBitwidth)
}
}
}