avx_async/
quantum.rs

1//! Quantum-Inspired Optimization
2//!
3//! Quantum-inspired algorithms for task scheduling and optimization
4
5use std::sync::{Arc, Mutex};
6
7/// Quantum-inspired task scheduler using superposition and entanglement concepts
8#[derive(Clone)]
9pub struct QuantumScheduler {
10    state: Arc<Mutex<QuantumState>>,
11}
12
13struct QuantumState {
14    qubits: Vec<Qubit>,
15    entanglement_matrix: Vec<Vec<f64>>,
16    measurement_history: Vec<SchedulingDecision>,
17}
18
19#[derive(Clone, Debug)]
20struct Qubit {
21    alpha: f64,  // Amplitude for |0⟩ state
22    beta: f64,   // Amplitude for |1⟩ state
23    task_id: usize,
24}
25
26#[derive(Clone, Debug)]
27pub struct SchedulingDecision {
28    pub task_id: usize,
29    pub thread_id: usize,
30    pub priority: f64,
31    pub confidence: f64,
32}
33
34impl QuantumScheduler {
35    pub fn new(num_tasks: usize) -> Self {
36        let qubits: Vec<Qubit> = (0..num_tasks)
37            .map(|i| Qubit {
38                alpha: (std::f64::consts::FRAC_1_SQRT_2),
39                beta: (std::f64::consts::FRAC_1_SQRT_2),
40                task_id: i,
41            })
42            .collect();
43
44        let size = num_tasks;
45        let entanglement_matrix = vec![vec![0.0; size]; size];
46
47        Self {
48            state: Arc::new(Mutex::new(QuantumState {
49                qubits,
50                entanglement_matrix,
51                measurement_history: Vec::new(),
52            })),
53        }
54    }
55
56    /// Apply quantum rotation gate to adjust task priority
57    pub fn rotate(&self, task_id: usize, theta: f64) {
58        let mut state = self.state.lock().unwrap();
59        if let Some(qubit) = state.qubits.get_mut(task_id) {
60            let cos_theta = theta.cos();
61            let sin_theta = theta.sin();
62            let new_alpha = cos_theta * qubit.alpha - sin_theta * qubit.beta;
63            let new_beta = sin_theta * qubit.alpha + cos_theta * qubit.beta;
64            qubit.alpha = new_alpha;
65            qubit.beta = new_beta;
66        }
67    }
68
69    /// Create entanglement between two tasks
70    pub fn entangle(&self, task_a: usize, task_b: usize, strength: f64) {
71        let mut state = self.state.lock().unwrap();
72        if task_a < state.entanglement_matrix.len() && task_b < state.entanglement_matrix.len() {
73            state.entanglement_matrix[task_a][task_b] = strength;
74            state.entanglement_matrix[task_b][task_a] = strength;
75        }
76    }
77
78    /// Measure qubit state and make scheduling decision
79    pub fn measure(&self, task_id: usize, num_threads: usize) -> Option<SchedulingDecision> {
80        let mut state = self.state.lock().unwrap();
81
82        if task_id >= state.qubits.len() {
83            return None;
84        }
85
86        let qubit = &state.qubits[task_id];
87
88        // Probability of measuring |1⟩ state (high priority)
89        let prob = qubit.beta * qubit.beta;
90
91        // Consider entanglement effects
92        let mut entanglement_boost = 0.0;
93        for (other_id, &strength) in state.entanglement_matrix[task_id].iter().enumerate() {
94            if other_id != task_id && strength > 0.0 {
95                entanglement_boost += strength * state.qubits[other_id].beta;
96            }
97        }
98
99        let adjusted_prob = (prob + entanglement_boost * 0.1).min(1.0);
100
101        // Quantum-inspired thread selection
102        let thread_id = ((adjusted_prob * num_threads as f64).floor() as usize) % num_threads;
103
104        let decision = SchedulingDecision {
105            task_id,
106            thread_id,
107            priority: adjusted_prob,
108            confidence: qubit.alpha.abs() + qubit.beta.abs(),
109        };
110
111        state.measurement_history.push(decision.clone());
112
113        Some(decision)
114    }
115
116    /// Apply quantum interference to optimize scheduling
117    pub fn interference(&self, task_a: usize, task_b: usize) -> f64 {
118        let state = self.state.lock().unwrap();
119
120        if task_a >= state.qubits.len() || task_b >= state.qubits.len() {
121            return 0.0;
122        }
123
124        let q_a = &state.qubits[task_a];
125        let q_b = &state.qubits[task_b];
126
127        // Quantum interference pattern
128        let interference = (q_a.alpha * q_b.alpha + q_a.beta * q_b.beta).abs();
129        interference
130    }
131
132    /// Get optimal task ordering using quantum annealing simulation
133    pub fn anneal(&self, temperature: f64) -> Vec<usize> {
134        let state = self.state.lock().unwrap();
135        let _n = state.qubits.len();
136
137        let mut ordering: Vec<(usize, f64)> = state.qubits.iter()
138            .map(|q| {
139                let energy = -(q.beta * q.beta) / (1.0 + temperature);
140                (q.task_id, energy)
141            })
142            .collect();
143
144        // Sort by energy (lower energy = higher priority)
145        ordering.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
146
147        ordering.into_iter().map(|(id, _)| id).collect()
148    }
149
150    /// Get scheduling statistics
151    pub fn stats(&self) -> QuantumStats {
152        let state = self.state.lock().unwrap();
153
154        let avg_priority = if !state.qubits.is_empty() {
155            state.qubits.iter().map(|q| q.beta * q.beta).sum::<f64>() / state.qubits.len() as f64
156        } else {
157            0.0
158        };
159
160        let total_entanglement: f64 = state.entanglement_matrix.iter()
161            .flat_map(|row| row.iter())
162            .sum::<f64>() / 2.0; // Divide by 2 because matrix is symmetric
163
164        QuantumStats {
165            num_qubits: state.qubits.len(),
166            avg_priority,
167            total_entanglement,
168            measurements: state.measurement_history.len(),
169        }
170    }
171}
172
173#[derive(Debug, Clone)]
174pub struct QuantumStats {
175    pub num_qubits: usize,
176    pub avg_priority: f64,
177    pub total_entanglement: f64,
178    pub measurements: usize,
179}
180
181impl std::fmt::Display for SchedulingDecision {
182    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
183        write!(
184            f,
185            "Decision[task={}, thread={}, priority={:.2}, confidence={:.2}]",
186            self.task_id, self.thread_id, self.priority, self.confidence
187        )
188    }
189}
190
191impl std::fmt::Display for QuantumStats {
192    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
193        write!(
194            f,
195            "QuantumStats[qubits={}, avg_priority={:.3}, entanglement={:.2}, measurements={}]",
196            self.num_qubits, self.avg_priority, self.total_entanglement, self.measurements
197        )
198    }
199}
200
201
202
203
204