1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
//! Functional testing framework for [AVR] binaries, powered by [simavr]:
//!
//! ```no_run
//! use avr_tester::*;
//!
//! // Assuming `yourproject` implements a ROT-13 encoder:
//!
//! #[test]
//! fn test() {
//! let mut avr = AvrTester::atmega328p()
//! .with_clock_of_16_mhz()
//! .load("../../yourproject/target/atmega328p/release/yourproject.elf");
//!
//! // Let's give our firmware a moment to initialize:
//! avr.run_for_ms(1);
//!
//! // Now, let's send the string:
//! avr.uart0().write("Hello, World!");
//!
//! // ... give the AVR a moment to retrieve it & send back, encoded:
//! avr.run_for_ms(1);
//!
//! // ... and, finally, let's assert the outcome:
//! assert_eq!("Uryyb, Jbeyq!", avr.uart0().read::<String>());
//! }
//! ```
//!
//! For more details, please see README.
//!
//! [AVR]: https://en.wikipedia.org/wiki/AVR_microcontrollers
//! [simavr]: https://github.com/buserror/simavr
mod builder;
mod components;
mod duration_ext;
mod pins;
mod read;
mod spi;
mod uart;
mod utils;
mod write;
use avr_simulator::{AvrSimulator, AvrState};
use std::{marker::PhantomData, path::Path};
pub use self::{
builder::*, components::*, duration_ext::*, pins::*, read::*, spi::*, uart::*, utils::*,
write::*,
};
pub use avr_simulator::AvrDuration;
/// Simulator's entry point; you can build it using [`AvrTester::atmega328p()`]
/// or a similar function.
#[derive(Debug)]
pub struct AvrTester {
sim: Option<AvrSimulator>,
clock_frequency: u32,
remaining_clock_cycles: Option<u64>,
components: Components,
}
impl AvrTester {
pub(crate) fn new(
mcu: &str,
clock_frequency: u32,
firmware: impl AsRef<Path>,
remaining_clock_cycles: Option<u64>,
) -> Self {
Self {
sim: Some(AvrSimulator::new(mcu, clock_frequency, firmware)),
clock_frequency,
remaining_clock_cycles,
components: Components::new(),
}
}
/// Runs a full single instruction, returning the number of cycles it took
/// to execute that instruction (e.g. `MUL` takes two cycles or so).
///
/// Note that the number returned here is somewhat approximate (see
/// [`AvrDuration`]), but it's guaranteed to be at least one cycle.
///
/// See also:
///
/// - [`Self::run_for_s()`],
/// - [`Self::run_for_ms()`],
/// - [`Self::run_for_us()`].
pub fn run(&mut self) -> AvrDuration {
let step = self.sim().step();
self.components
.run(&mut self.sim, self.clock_frequency, step.tt);
if let Some(remaining_clock_cycles) = &mut self.remaining_clock_cycles {
*remaining_clock_cycles = remaining_clock_cycles.saturating_sub(step.tt.as_cycles());
if *remaining_clock_cycles == 0 {
panic!("Test timed-out");
}
}
match step.state {
AvrState::Running => {
//
}
AvrState::Crashed => {
panic!(
"AVR crashed (e.g. the program stepped on an invalid \
instruction)"
);
}
AvrState::Sleeping => {
panic!(
"AVR went to sleep (this panics, because AvrTester doesn't \
provide any way to wake up the microcontroller yet)"
);
}
state => {
panic!("Unexpected AvrState: {:?}", state);
}
}
step.tt
}
/// Runs firmware for given number of cycles (when given [`u64`]) or given
/// [`AvrDuration`].
///
/// See also:
///
/// - [`Self::run_for_s()`],
/// - [`Self::run_for_ms()`],
/// - [`Self::run_for_us()`].
pub fn run_for(&mut self, n: impl IntoCycles) {
let mut cycles = n.into_cycles();
while cycles > 0 {
cycles = cycles.saturating_sub(self.run().as_cycles());
}
}
/// Runs firmware for given number of _AVR_ microseconds, considering the
/// clock specified through [`AvrTesterBuilder::with_clock()`].
///
/// See:
///
/// - [`Self::run_for_s()`],
/// - [`Self::run_for_ms()`].
///
/// See also: [`Self::run()`].
pub fn run_for_us(&mut self, n: u64) {
self.run_for(AvrDuration::micros(self, n));
}
/// Runs firmware for given number of _AVR_ milliseconds, considering the
/// clock specified through [`AvrTesterBuilder::with_clock()`].
///
/// See:
///
/// - [`Self::run_for_s()`],
/// - [`Self::run_for_us()`].
///
/// See also: [`Self::run()`].
pub fn run_for_ms(&mut self, n: u64) {
self.run_for(AvrDuration::millis(self, n));
}
/// Runs firmware for given number of _AVR_ seconds, considering the clock
/// specified through [`AvrTesterBuilder::with_clock()`].
///
/// See:
///
/// - [`Self::run_for_ms()`],
/// - [`Self::run_for_us()`].
///
/// See also: [`Self::run()`].
pub fn run_for_s(&mut self, n: u64) {
self.run_for(AvrDuration::secs(self, n));
}
/// Returns an object providing read & write access to the analog & digital
/// pins (such as `ADC1`, `PD4` etc.).
///
/// Note that the returned object contains all possible pins for all of the
/// existing AVRs, while the AVR of yours probably supports only a subset of
/// those pins - trying to access a pin that does not exist for your AVR
/// will panic.
pub fn pins(&mut self) -> Pins<'_> {
Pins::new(self)
}
/// Returns an object providing access to SPI0 (i.e. the default SPI).
///
/// Note that if your AVR doesn't have SPI, operating on it will panic.
pub fn spi0(&mut self) -> Spi<'_> {
Spi::new(self.sim(), 0)
}
/// Returns an object providing access to SPI1.
///
/// Note that if your AVR doesn't have SPI, operating on it will panic.
pub fn spi1(&mut self) -> Spi<'_> {
Spi::new(self.sim(), 1)
}
/// Returns an object providing access to UART0 (i.e. the default UART).
///
/// Note that if your AVR doesn't have UART0, operating on it will panic.
pub fn uart0(&mut self) -> Uart<'_> {
Uart::new(self.sim(), '0')
}
/// Returns an object providing access to UART1.
///
/// Note that if your AVR doesn't have UART1, operating on it will panic.
pub fn uart1(&mut self) -> Uart<'_> {
Uart::new(self.sim(), '1')
}
/// Returns an object providing acccess to components (aka _peripherals_)
/// attached to the AVR.
pub fn components(&mut self) -> &mut Components {
&mut self.components
}
fn sim(&mut self) -> &mut AvrSimulator {
self.sim
.as_mut()
.expect("AvrSimulator had been deallocated - has some component crashed?")
}
}
/// Asynchronous equivalent of [`AvrTester`].
///
/// See [`avr_rt()`] for more details.
pub struct AvrTesterAsync {
_pd: PhantomData<()>,
}
impl AvrTesterAsync {
fn new() -> Self {
Self {
_pd: Default::default(),
}
}
/// Asynchronous equivalent of [`AvrTester::run()`].
///
/// See [`avr_rt()`] for more details.
pub async fn run(&self) -> AvrDuration {
ResumeFuture::new().await
}
/// Asynchronous equivalent of [`AvrTester::run_for()`].
///
/// See [`avr_rt()`] for more details.
pub async fn run_for(&self, n: impl IntoCycles) {
let cycles = n.into_cycles();
let fut = ComponentRuntime::with(|rt| {
SleepFuture::new(AvrDuration::new(rt.clock_frequency(), cycles))
});
fut.await;
}
/// Asynchronous equivalent of [`AvrTester::run_for_us()`].
///
/// See [`avr_rt()`] for more details.
pub async fn run_for_us(&self, n: u64) {
let fut = ComponentRuntime::with(|rt| {
SleepFuture::new(AvrDuration::new(rt.clock_frequency(), 0).with_micros(n))
});
fut.await;
}
/// Asynchronous equivalent of [`AvrTester::run_for_ms()`].
///
/// See [`avr_rt()`] for more details.
pub async fn run_for_ms(&self, n: u64) {
let fut = ComponentRuntime::with(|rt| {
SleepFuture::new(AvrDuration::new(rt.clock_frequency(), 0).with_millis(n))
});
fut.await;
}
/// Asynchronous equivalent of [`AvrTester::run_for_s()`].
///
/// See [`avr_rt()`] for more details.
pub async fn run_for_s(&self, n: u64) {
let fut = ComponentRuntime::with(|rt| {
SleepFuture::new(AvrDuration::new(rt.clock_frequency(), 0).with_secs(n))
});
fut.await;
}
/// Asynchronous equivalent of [`AvrTester::pins()`].
///
/// See [`avr_rt()`] for more details.
pub fn pins(&self) -> PinsAsync {
PinsAsync::new()
}
/// Asynchronous equivalent of [`AvrTester::spi0()`].
///
/// See [`avr_rt()`] for more details.
pub fn spi0(&self) -> SpiAsync {
SpiAsync::new(0)
}
/// Asynchronous equivalent of [`AvrTester::spi1()`].
///
/// See [`avr_rt()`] for more details.
pub fn spi1(&self) -> SpiAsync {
SpiAsync::new(1)
}
/// Asynchronous equivalent of [`AvrTester::uart0()`].
///
/// See [`avr_rt()`] for more details.
pub fn uart0(&mut self) -> UartAsync {
UartAsync::new('0')
}
/// Asynchronous equivalent of [`AvrTester::uart1()`].
///
/// See [`avr_rt()`] for more details.
pub fn uart1(&mut self) -> UartAsync {
UartAsync::new('1')
}
}
/// Returns [`AvrTesterAsync`] for usage inside **components**.
///
/// See [`Components`] for more details.
pub fn avr_rt() -> AvrTesterAsync {
AvrTesterAsync::new()
}
macro_rules! constructors {
( $( $name:ident ),* $(,)? ) => {
impl AvrTester {
$(
pub fn $name() -> AvrTesterBuilder {
AvrTesterBuilder::new(stringify!($name))
}
)*
}
}
}
constructors! {
// sim_mega8.c
atmega8, atmega81,
// sim_mega16.c
atmega16,
// sim_mega16m1.c
atmega16m1,
// sim_mega32.c
atmega32,
// sim_mega32u4.c
atmega32u4,
// sim_mega48.c
atmega48, atmega48p, atmega48pa,
// sim_mega64m1.c
atmega64m1,
// sim_mega88.c
atmega88, atmega88p, atmega88pa,
// sim_mega128.c
atmega128, atmega128l,
// sim_mega128rfa1.c
atmega128rfa1,
// sim_mega128rfr2.c
atmega128rfr2,
// sim_mega164.c
atmega164, atmega164p, atmega164pa,
// sim_mega168.c
atmega168, atmega168p, atmega168pa,
// sim_mega169.c
atmega169p,
// sim_mega324.c
atmega324, atmega324p,
// sim_mega324a.c
atmega324a, atmega324pa,
// sim_mega328.c
atmega328, atmega328p,
// sim_mega328pb.c
atmega328pb,
// sim_mega644.c
atmega644, atmega644p,
// sim_mega1280.c
atmega1280,
// sim_mega1281.c
atmega1281,
// sim_mega1284.c
atmega1284p, atmega1284,
// sim_mega2560.c
atmega2560, atmega2561,
// sim_tiny13.c
attiny13, attiny13a,
// sim_tiny24.c
attiny24,
// sim_tiny25.c
attiny25,
// sim_tiny44.c
attiny44,
// sim_tiny45.c
attiny45,
// sim_tiny84.c
attiny84,
// sim_tiny85.c
attiny85,
// sim_tiny2313.c
attiny2313, attiny2313v,
// sim_tiny2313a.c
attiny2313a,
// sim_tiny4313.c
attiny4313,
}