1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
mod component_controller;
mod component_handle;
mod component_runtime;
mod component_state;
mod futures;
use self::component_controller::*;
use crate::*;
use std::future::Future;
pub use self::{component_handle::*, component_state::*};
pub(crate) use self::{component_runtime::*, futures::*};
/// Manages components.
///
/// # Abstract
///
/// Components are _peripherals_ attached to the AVR - they allow to easily
/// simulate external devices, such as shift registers or screens, without
/// forcing you to think about those devices' timings with respect to other
/// attached peripherals.
///
/// For instance, let's say that we've got a firmware that provides some UART
/// functionality, but at the same time it requires for `PB1` and `PB2` to be
/// toggled in regular intervals (say, because they are attached to watchdog).
///
/// Assuming `PB1` has to be toggled each 5 ms and `PB2` each 15 ms, we could
/// write a test such as this:
///
/// ```no_run
/// # use avr_tester::*;
/// # fn avr() -> AvrTester { panic!() }
/// #
/// let mut avr = avr();
///
/// avr.uart0().write([0x01, 0x02, 0x03]);
///
/// for cycle in 0.. {
/// // Keep the watchdog happy:
/// if cycle % 5 == 0 {
/// avr.pins().pb1().toggle();
/// }
///
/// if cycle % 15 == 0 {
/// avr.pins().pb2().toggle();
/// }
///
/// // Check if the response has arrived:
/// if let Some(response) = avr.uart0().try_read_byte() {
/// assert_eq!(0x06, response);
/// break;
/// }
///
/// avr.run_for_ms(1);
/// }
/// ```
///
/// ... but that approach not only scales poorly (imagine having to handle
/// multiple devices, each with its own clock!), but also obfuscates the test -
/// if we're mostly interested in the UART part, then there shouldn't be any
/// reason to intertwine it with the pin-toggling.
///
/// Here come components - they are like background tasks that are polled after
/// each AVR's instruction:
///
/// ```no_run
/// # use avr_tester::*;
/// # fn avr() -> AvrTester { panic!() }
/// #
/// let mut avr = avr();
///
/// // Start the `PB1` toggler:
/// avr.components().add(async {
/// loop {
/// avr_rt().pins().pb1().toggle();
/// avr_rt().run_for_ms(5).await;
/// }
/// });
///
/// // Start the `PB2` toggler:
/// avr.components().add(async {
/// loop {
/// avr_rt().pins().pb2().toggle();
/// avr_rt().run_for_ms(15).await;
/// }
/// });
///
/// // Perform the test:
/// avr.uart0().write([0x01, 0x02, 0x03]);
/// avr.run_for_ms(100);
/// assert_eq!(Some(0x06), avr.uart0().try_read_byte());
/// ```
///
/// Components are handy, because AvrTester automatically takes care of
/// their scheduling - we don't have to worry about `PB1` and `PB2`'s timings
/// anymore: we just say "PB1 must be toggled every 5 ms", "PB2 must be toggled
/// every 15 ms" and that's it.
///
/// From AvrTester's perspective, what happens here is basically:
///
/// ```text
/// fn run_for_ms(ms):
/// /* run() in a loop */
///
/// fn run():
/// simavr.run_one_instruction()
///
/// for component in components:
/// component.poll(simavr)
/// ```
///
/// # Writing components
///
/// Writing components doesn't differ that much from writing regular tests - the
/// most important caveat is that components must be asynchronous, so that
/// AvrTester knows when a component has finished its "clock cycle".
///
/// This means that inside components you can't access regular [`AvrTester`] -
/// you have to call [`avr_rt()`], which returns [`AvrTesterAsync`] with its
/// own set of functions that operate on pins.
///
/// Similarly, instead of calling `thread::sleep()` you should invoke
/// `avr_rt().run_for_ms(...)`.
///
/// # Examples
///
/// ## `PB2 = !PB1`
///
/// This component implements a simple `PB2 = !PB1` real-time gate:
///
/// ```no_run
/// # use avr_tester::*;
/// # fn avr() -> AvrTester { panic!() }
/// # let mut avr = avr();
/// #
/// avr.components().add(async {
/// loop {
/// let is_high = avr_rt().pins().pb1().is_high();
///
/// avr_rt().pins().pb2().set(!is_high);
/// avr_rt().run().await;
/// }
/// });
/// ```
#[derive(Debug)]
pub struct Components {
components: Vec<ComponentController>,
}
impl Components {
pub(crate) fn new() -> Self {
Self {
components: Default::default(),
}
}
/// Creates a new component and attaches it into the AVR.
///
/// See [`Components`] for more details.
pub fn add(&mut self, component: impl Future<Output = ()> + 'static) -> ComponentHandle {
let (controller, handle) = ComponentController::new(component);
self.components.push(controller);
handle
}
pub(crate) fn run(
&mut self,
sim: &mut Option<AvrSimulator>,
clock_frequency: u32,
tt: AvrDuration,
) {
if self.components.is_empty() {
return;
}
ComponentRuntime::setup(sim.take().unwrap(), clock_frequency, tt);
// ---
let mut components_to_remove = Vec::new();
for (component_idx, component) in self.components.iter_mut().enumerate() {
match component.run() {
ComponentControllerResult::KeepComponent => {
//
}
ComponentControllerResult::RemoveComponent => {
components_to_remove.push(component_idx);
}
}
}
for (removed_components, component_idx) in components_to_remove.into_iter().enumerate() {
self.components.remove(component_idx - removed_components);
}
// ---
*sim = Some(ComponentRuntime::destroy());
}
}