1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! Functional testing framework for [AVR] binaries, powered by [simavr].
//!
//! [AVR]: https://en.wikipedia.org/wiki/AVR_microcontrollers
//! [simavr]: https://github.com/buserror/simavr
//!
//! For more details, please see this repository's README.

#![feature(maybe_uninit_uninit_array)]

mod builder;
mod pins;
mod simulator;
mod uart;

use self::simulator::*;
use std::path::Path;

pub use self::{builder::*, pins::*, simulator::CpuCyclesTaken, uart::*};

/// A comfortable wrapper over [simavr] that allows to test [AVR] binaries in
/// seconds.
///
/// [simavr]: https://github.com/buserror/simavr
/// [AVR]: https://en.wikipedia.org/wiki/AVR_microcontrollers
///
/// For more details, please see this repository's README.
pub struct AvrTester {
    sim: AvrSimulator,
    clock: u32,
}

impl AvrTester {
    pub(crate) fn new(mcu: &str, firmware: impl AsRef<Path>, clock: u32) -> Self {
        let mut sim = AvrSimulator::new(mcu, clock);

        sim.flash(firmware);

        Self { sim, clock }
    }

    /// Runs a full single instruction, returning the number of cycles it took
    /// to execute that instruction (e.g. `MUL` takes two cycles or so).
    ///
    /// Note that the number returned here is somewhat approximate (see:
    /// [`CpuCyclesTaken`]).
    ///
    /// See also: [`Self::run_for_s()`], [`Self::run_for_ms()`],
    /// [`Self::run_for_us()`].
    pub fn run(&mut self) -> CpuCyclesTaken {
        let (state, cycles_taken) = self.sim.run();

        match state {
            CpuState::Running => {
                //
            }

            CpuState::Crashed => {
                panic!("AVR crashed (e.g. the program stepped on an invalid instruction)");
            }

            CpuState::Sleeping => {
                panic!(
                    "AVR went to sleep (this panics, because AvrTester doesn't \
                     provide any way to wake up the microcontroller yet)"
                );
            }

            state => {
                panic!("Unexpected CpuState: {:?}", state)
            }
        }

        cycles_taken
    }

    /// Runs code for given number of cycles.
    ///
    /// See also: [`Self::run_for_s()`], [`Self::run_for_ms()`],
    /// [`Self::run_for_us()`].
    pub fn run_for(&mut self, mut cycles: u64) {
        while cycles > 0 {
            cycles = cycles.saturating_sub(self.run().get().max(1));
        }
    }

    /// Runs code for given number of _AVR_ seconds, considering the clock
    /// specified through [`AvrTesterBuilder::with_clock()`].
    ///
    /// See: [`Self::run_for_ms()`], [`Self::run_for_us()`].
    ///
    /// See also: [`Self::run()`].
    pub fn run_for_s(&mut self, s: u32) {
        let clock = self.clock as u64;
        let s = s as u64;

        self.run_for(clock * s);
    }

    /// Runs code for given number of _AVR_ milliseconds, considering the clock
    /// specified through [`AvrTesterBuilder::with_clock()`].
    ///
    /// See: [`Self::run_for_s()`], [`Self::run_for_us()`].
    ///
    /// See also: [`Self::run()`].
    pub fn run_for_ms(&mut self, ms: u32) {
        let clock = self.clock as f32;
        let ms = ms as f32;

        self.run_for((clock * ms / 1_000.0).ceil() as _);
    }

    /// Runs code for given number of _AVR_ microseconds, considering the clock
    /// specified through [`AvrTesterBuilder::with_clock()`].
    ///
    /// See: [`Self::run_for_s()`], [`Self::run_for_ms()`].
    ///
    /// See also: [`Self::run()`].
    pub fn run_for_us(&mut self, us: u32) {
        let clock = self.clock as f32;
        let us = us as f32;

        self.run_for((clock * us / 1_000_000.0).ceil() as _);
    }

    /// Returns an object providing access to the input and output pins (such as
    /// `ADC1`, `PD4` etc.).
    ///
    /// Note that the returned object contains all possible pins for all of the
    /// existing AVRs, while the AVR of yours probably supports only a subset of
    /// those pins - trying to access a pin that does not exist for your AVR
    /// will gracefully `panic!()`.
    pub fn pins(&mut self) -> Pins<'_> {
        Pins::new(&mut self.sim)
    }

    /// Returns an object providing access to UART0 (i.e. the default UART).
    ///
    /// Note that if your AVR doesn't support UART0, operating on it will
    /// gracefully `panic!()`.
    pub fn uart0(&mut self) -> Uart<'_> {
        Uart::new(&mut self.sim, 0)
    }

    /// Returns an object providing access to UART1.
    ///
    /// Note that if your AVR doesn't support UART1, operating on it will
    /// gracefully `panic!()`.
    pub fn uart1(&mut self) -> Uart<'_> {
        Uart::new(&mut self.sim, 1)
    }
}

macro_rules! constructors {
    ( $( $name:ident ),* $(,)? ) => {
        impl AvrTester {
            $(
                pub fn $name() -> AvrTesterBuilder {
                    AvrTesterBuilder::new(stringify!($name))
                }
            )*
        }
    }
}

constructors! {
    // sim_mega8.c
    atmega8, atmega81,

    // sim_mega16.c
    atmega16,

    // sim_mega16m1.c
    atmega16m1,

    // sim_mega32.c
    atmega32,

    // sim_mega32u4.c
    atmega32u4,

    // sim_mega48.c
    atmega48, atmega48p, atmega48pa,

    // sim_mega64m1.c
    atmega64m1,

    // sim_mega88.c
    atmega88, atmega88p, atmega88pa,

    // sim_mega128.c
    atmega128, atmega128l,

    // sim_mega128rfa1.c
    atmega128rfa1,

    // sim_mega128rfr2.c
    atmega128rfr2,

    // sim_mega164.c
    atmega164, atmega164p, atmega164pa,

    // sim_mega168.c
    atmega168, atmega168p, atmega168pa,

    // sim_mega169.c
    atmega169p,

    // sim_mega324.c
    atmega324, atmega324p,

    // sim_mega324a.c
    atmega324a, atmega324pa,

    // sim_mega328.c
    atmega328, atmega328p,

    // sim_mega328pb.c
    atmega328pb,

    // sim_mega644.c
    atmega644, atmega644p,

    // sim_mega1280.c
    atmega1280,

    // sim_mega1281.c
    atmega1281,

    // sim_mega1284.c
    atmega1284p, atmega1284,

    // sim_mega2560.c
    atmega2560, atmega2561,

    // sim_tiny13.c
    attiny13, attiny13a,

    // sim_tiny24.c
    attiny24,

    // sim_tiny25.c
    attiny25,

    // sim_tiny44.c
    attiny44,

    // sim_tiny45.c
    attiny45,

    // sim_tiny84.c
    attiny84,

    // sim_tiny85.c
    attiny85,

    // sim_tiny2313.c
    attiny2313, attiny2313v,

    // sim_tiny2313a.c
    attiny2313a,

    // sim_tiny4313.c
    attiny4313,
}