1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
//! Best-effort safe wrapper for progmem.
//!
//! This module offers the [`ProgMem`] struct that wraps pointers into progmem,
//! and only gives access to that value via methods that first load the value
//! into the normal data memory domain.
//! This is also the reason why the value must be `Copy` and is always returned
//! by-value instead of by-reference (since the value is not in the data memory
//! where it could be referenced).
//!
//! Since the `ProgMem` struct loads the value using special instructions,
//! it really must be in progmem, otherwise it would be **undefined behavior**
//! to use any of its methods.
//! Therefore, its constructor is `unsafe` where the
//! caller must guarantee that the given pointer truly points to a valid value
//! stored in progmem.
//!
//! As convenience, the [`progmem!`] macro is offered that will create
//! a `static` in progmem with the given value and wrap a pointer to it in the
//! [`ProgMem`] struct for you.
use crate::raw::read_value;
/// Best-effort safe wrapper around a value in program memory.
///
/// This type wraps a pointer to a value that is stored in program memory,
/// and offers safe functions to [`load`](ProgMem::load) that value from
/// program memory into the data memory domain from where it can be normally
/// used.
///
/// Since its constructor is the single most critical point in its API,
/// it is `unsafe`, despite it is supposed to be a safe wrapper (hence the
/// 'best-effort' notation).
/// The caller of the constructor therefore must ensure that the supplied
/// pointer points to a valid value stored in program memory.
///
/// Consequently, the only way to use this struct soundly is to define a
/// `static` with the `#[link_section = ".progmem.data"]` attribute on it and
/// pass a pointer to that `static` to `ProgMem::new`.
/// However, having an accessible `static` around that is stored in progmem
/// is a very dangerous endeavor.
///
/// In order to make working with progmem safer and more convenient,
/// consider using the [`progmem!`] macro, that will put the given data
/// into a hidden `static` in progmem and provide you with an accessible static
/// containing the pointer to it wrapped in `ProgMem`.
///
///
/// # Safety
///
/// The `target` pointer in this struct must point to a valid object of type
/// `T` that is stored in the program memory domain.
/// The object must be initialized, readable, and immutable (i.e. it must not
/// be changed).
/// Also the `target` pointer must be valid for the `'static` lifetime.
///
/// However, the above requirement about the program memory domain only applies
/// to the AVR architecture (`#[cfg(target_arch = "avr")]`),
/// otherwise normal data access primitives are used.
/// This means that the value must be stored in the
/// regular data memory domain for ALL OTHER architectures! This still
/// holds, even if such other architecture is of the Harvard architecture,
/// because this is an AVR-only crate, not a general Harvard architecture
/// crate!
///
#[non_exhaustive] // SAFETY: Must not be publicly creatable
pub struct ProgMem<T> {
/// Points to some `T` in progmem.
///
/// # Safety
///
/// See the struct doc.
target: *const T,
}
unsafe impl<T> Send for ProgMem<T> {
// SAFETY: pointers per-se are sound to send & share.
// Further more, we will never mutate the underling value, thus `ProgMem`
// can be considered as some sort of sharable `'static` "reference".
// Thus it can be shared and transferred between threads.
}
unsafe impl<T> Sync for ProgMem<T> {
// SAFETY: pointers per-se are sound to send & share.
// Further more, we will never mutate the underling value, thus `ProgMem`
// can be considered as some sort of sharable `'static` "reference".
// Thus it can be shared and transferred between threads.
}
impl<T> ProgMem<T> {
/// Construct a new instance of this type.
///
/// This struct is a pointer wrapper for data in the program memory domain.
/// Therefore when constructing this struct, it must be guaranteed
/// that the pointed data is stored in progmem!
/// This contract is expressed by the fact that this function is `unsafe`.
/// See the Safety section for details.
///
/// You should not need to call this function directly.
/// It is recommended to use the [`progmem!`] macro instead (which calls
/// this constructor for you, while enforcing its contract.
///
///
/// # Safety
///
/// The `ProgMem` wrapper is build around the invariant that the wrapped
/// pointer is stored in the program code memory domain (on the AVR
/// architecture).
///
/// That means that this function is only sound to call, if the value to
/// which `target` points is stored in a `static` that is stored in progmem,
/// e.g. by using the attribute `#[link_section = ".progmem.data"]`.
///
/// However, the above requirement about the program memory domain only
/// applies to the AVR architecture (`#[cfg(target_arch = "avr")]`),
/// otherwise normal data access primitives are used,
/// and thus the `target` pointer needs to point to normal data on those
/// architectures.
///
pub const unsafe fn new(target: *const T) -> Self {
ProgMem {
target,
}
}
}
impl<T: Copy> ProgMem<T> {
/// Read the inner value from progmem and return a regular value.
///
/// # Panics
///
/// This method panics, if the size of the value (i.e. `size_of::<T>()`)
/// is beyond 255 bytes.
/// However, this is currently just a implementation limitation, which may
/// be lifted in the future.
///
/// Also notice, if you really hit this limit, you would need 256+ bytes on
/// your stack, on the Arduino Uno (at least) that means that you might be
/// close to a stack overflow. Thus it might be better to restructure your
/// data, so you can store it as an array of something, than you can use
/// the [`load_at`] and [`load_sub_array`] methods instead.
///
/// [`load_at`]: struct.ProgMem.html#method.load_at
/// [`load_sub_array`]: struct.ProgMem.html#method.load_sub_array
///
pub fn load(&self) -> T {
// This is safe, because the invariant of this struct demands that
// this value (i.e. self and thus also its inner value) are stored
// in the progmem domain, which is what `read_value` requires from us.
unsafe { read_value(self.target) }
}
/// Return the raw pointer to the inner value.
///
/// Notice that the returned pointer is indeed a pointer into the progmem
/// domain! It may never be dereferenced via the default Rust operations.
/// That means a `unsafe{*pm.get_inner_ptr()}` is **undefined behavior**!
///
/// Instead, if you want to use the pointer, you may want to use one of
/// the "raw" functions, see the [raw](crate::raw) module.
///
pub fn as_ptr(&self) -> *const T {
self.target
}
}
/// Utilities to work with an array in progmem.
impl<T: Copy, const N: usize> ProgMem<[T; N]> {
/// Load a single element from the inner array.
///
/// This method is analog to a slice indexing `self.load()[idx]`, so the
/// same requirements apply, like the index `idx` should be less then the
/// length `N` of the array, otherwise a panic will be risen.
///
///
/// # Panics
///
/// This method panics, if the given index `idx` is grater or equal to the
/// length `N` of the inner type.
///
/// This method also panics, if the size of the value (i.e. `size_of::<T>()`)
/// is beyond 255 bytes.
/// However, this is currently just a implementation limitation, which may
/// be lifted in the future.
///
/// Notice, that here `T` is the type of the elements not the entire array
/// as it would be with [`load`](Self::load).
///
pub fn load_at(&self, idx: usize) -> T {
// SAFETY: check that `idx` is in bounds
assert!(idx < N, "Given index is out of bounds");
let first_element_ptr: *const T = self.target.cast();
// Get a point to the selected element
let element_ptr = first_element_ptr.wrapping_add(idx);
// This is safe, because the invariant of this struct demands that
// this value (i.e. self and thus also its inner value) are stored
// in the progmem domain, which is what `read_value` requires from us.
//
// Also notice that the slice-indexing above gives us a bounds check.
//
unsafe { read_value(element_ptr) }
}
/// Loads a sub array from the inner array.
///
/// This method is analog to a sub-slicing `self.load()[idx..(idx+M)]` but
/// returning an owned array instead of a slice, simply because it has to
/// copy the data anyway from the progmem into the data domain (i.e. the
/// stack).
///
/// Also notice, that since this crate is intended for AVR
/// micro-controllers, static arrays are generally preferred over
/// dynamically allocated types such as a `Vec`.
///
///
/// # Panics
///
/// This method panics, if the given index `idx` is grater or equal to the
/// length `N` of the inner array, or the end index `idx+M` is grater than
/// the length `N` of the inner array.
///
/// This method also panics, if the size of the value
/// (i.e. `size_of::<[T;M]>()`) is beyond 255 bytes.
/// However, this is currently just a implementation limitation, which may
/// be lifted in the future.
///
pub fn load_sub_array<const M: usize>(&self, start_idx: usize) -> [T; M] {
// Just a check to give a nicer panic message
assert!(
M <= N,
"The sub array can not be grater than the source array"
);
// SAFETY: bounds check, the last element of the sub array must
// still be within the source array (i.e. self)
assert!(
start_idx + M <= N,
"The sub array goes beyond the end of the source array"
);
let first_source_element_ptr: *const T = self.target.cast();
// Get a point to the selected element
let first_output_element_ptr = first_source_element_ptr.wrapping_add(start_idx);
// Pointer into as sub array into the source
let sub_array_ptr: *const [T; M] = first_output_element_ptr.cast();
// SAFETY: This is safe, because the invariant of this struct demands
// that this value (i.e. self and thus also its inner value) are stored
// in the progmem domain, which is what `read_value` requires from us.
unsafe { read_value(sub_array_ptr) }
}
/// Lazily iterate over all elements
///
/// Returns an iterator which lazily loads the elements one at a time
/// from progmem.
/// This means this iterator can be used to access huge arrays while
/// only requiring `size_of::<T>()` amount of stack memory.
///
/// # Panics
///
/// This method panics, if the size of an element (i.e. `size_of::<T>()`)
/// is beyond 255 bytes.
/// However, this is currently just a implementation limitation, which may
/// be lifted in the future.
///
/// Notice, that here `T` is the type of the elements not the entire array
/// as it would be with [`load`](Self::load).
///
pub fn iter(&self) -> PmIter<T, N> {
PmIter::new(self)
}
/// Returns the length of the array (i.e. `N`)
pub fn len(&self) -> usize {
N
}
}
/// An iterator over an array in progmem.
///
/// Can be acquired via [`ProgMem::iter`].
pub struct PmIter<'a, T, const N: usize> {
progmem: &'a ProgMem<[T; N]>,
current_idx: usize,
}
impl<'a, T, const N: usize> PmIter<'a, T, N> {
/// Creates a new iterator over the given progmem array.
pub const fn new(pm: &'a ProgMem<[T; N]>) -> Self {
Self {
progmem: pm,
current_idx: 0,
}
}
}
impl<'a, T: Copy, const N: usize> Iterator for PmIter<'a, T, N> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
// Check for iterator end
if self.current_idx < N {
// Load next item from progmem
let b = self.progmem.load_at(self.current_idx);
self.current_idx += 1;
Some(b)
} else {
None
}
}
}
/// Same as [`ProgMem::iter`]
impl<'a, T: Copy, const N: usize> IntoIterator for &'a ProgMem<[T; N]> {
type IntoIter = PmIter<'a, T, N>;
type Item = T;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// Define a static in progmem.
///
/// This is a helper macro to simplify the definition of statics that are valid
/// to be wrapped in the `ProgMem` struct thus providing a safe way to work
/// with data in progmem.
///
/// Thus this macro essentially takes a user static definition and emits a
/// definition that is defined to be stored in the progmem section and then is
/// wrap in the `ProgMem` wrapper for safe access.
///
/// There are essentially three types of statics that you can created:
///
/// * ordinary fixed-size data, e.g. a `u8`, `(u16,u32)`, or your own struct.
/// * "auto-sized" arrays, essentially any kind of array `[T; N]`
/// * strings, i.e. anything `str`-ish such as string literals
///
///
/// # Ordinary Data
///
/// You can store any `Copy + Sized` data in progmem and load it at your
/// leisure.
///
/// ## Example
///
/// ```
/// use avr_progmem::progmem;
///
/// #[derive(Copy, Clone)]
/// struct Foo {
/// a: u16,
/// b: u32,
/// }
///
/// progmem!{
/// /// Static data stored in progmem!
/// pub static progmem BYTE: u8 = b'a';
///
/// /// Anything that is `Copy + Sized`
/// pub static progmem FOO: Foo = Foo { a: 42, b: 42 * 42 };
/// }
///
/// // Loading the byte from progmem onto the stack
/// let data: u8 = BYTE.load();
/// assert_eq!(b'a', data);
///
/// // Loading the arbitrary data
/// let foo: Foo = FOO.load();
/// assert_eq!(42, foo.a);
/// assert_eq!(1764, foo.b);
/// ```
///
///
/// # Arrays
///
/// Notice, that to access ordinary data from the progmem you have to load it
/// as whole before you can do anything with it.
/// In other words you can't just load `foo.a`, you have to first load the
/// entire struct into RAM.
///
/// When we have arrays, stuff can get hugh quickly, therefore,
/// specifically for arrays, we have additionally accessors to access elements
/// individually, without the burden to load the entire array first.
///
/// ```
/// use avr_progmem::progmem;
///
/// progmem!{
/// /// A simple array using ordinary syntax
/// pub static progmem ARRAY: [u16; 4] = [1, 2, 3, 4];
/// }
///
/// // We can still load the entire array (but you shouldn't do this with
/// // big arrays)
/// let array: [u16; 4] = ARRAY.load();
/// assert_eq!([1,2,3,4], array);
///
/// // We can also load individual elements
/// let last_elem: u16 = ARRAY.load_at(3);
/// assert_eq!(4, last_elem);
///
/// // And even arbitrary sub-arrays (tho they need to be statically sized)
/// let middle_stuff: [u16; 2] = ARRAY.load_sub_array(1);
/// assert_eq!([2, 3], middle_stuff);
///
/// // Finally, we can iterate the array lazily loading one byte after another
/// // so we need only just enough RAM for to handle a single element
/// let mut elem_iter = ARRAY.iter();
/// assert_eq!(Some(1), elem_iter.next());
/// assert_eq!(Some(2), elem_iter.next());
/// assert_eq!(Some(3), elem_iter.next());
/// assert_eq!(Some(4), elem_iter.next());
/// assert_eq!(None, elem_iter.next());
/// ```
///
/// ## Auto-Sizing
///
/// While we could use arrays with the syntax from above, we get also use an
/// alternative syntax, where the array size is gets inferred which is
/// particularly useful if you include external data (e.g. form a file).
///
/// ```
/// use avr_progmem::progmem;
///
/// progmem!{
/// /// An "auto-sized" array (the size is inferred and made accessible by
/// /// a constant named `DATA_LEN`, tho any name would do)
/// pub static progmem<const DATA_LEN: usize> DATA: [u8; DATA_LEN] =
/// *include_bytes!("../examples/test_text.txt"); // assume it's binary
/// }
///
/// // "auto-sized" array can be accessed in the exactly same way as ordinary
/// // arrays, we just don't need to hardcode the size, and even get this nice
/// // constant at our disposal.
/// let middle: u8 = DATA.load_at(DATA_LEN / 2);
/// assert_eq!(32, middle);
/// ```
///
/// # Strings
///
/// Strings are complicated, partially, because in Rust strings such as `str`
/// are unsized making storing them a nightmare (normally the compiler somehow
/// manages to automagically put all your string literals into static memory,
/// but you can't have a `static` that stores a `str` by-value, that is without
/// the `&`).
/// The next best thing that one can do to store a "string" is to store some
/// fix-size array either of `char`s or of UTF-8 encoded `u8`s, which aren't
/// exactly `str` and thus much more cumbersome to use.
/// Therefore, this crate has dedicated an entire
/// [module to strings](crate::string).
///
/// Consequently, this macro also has some special syntax to make string
/// literals, which are given as some `&str` and are automagically converted
/// into something more manageable
/// (i.e. a [`PmString`](crate::string::PmString)) and are put in this format
/// into a progmem `static`.
///
/// ## Examples
///
/// ```rust
/// use avr_progmem::progmem;
///
/// progmem! {
/// /// A static string stored in program memory as a `PmString`.
/// /// Notice the `string` keyword.
/// static progmem string TEXT = "Unicode text: 大賢者";
/// }
///
/// let text = TEXT.load();
/// assert_eq!("Unicode text: 大賢者", &*text);
/// ```
///
#[macro_export]
macro_rules! progmem {
// Special string rule
(
$( #[ $attr:meta ] )*
$vis:vis static progmem string $name:ident = $value:expr ;
$($rest:tt)*
) => {
// Just forward to internal rule
$crate::progmem_internal!{
$(#[$attr])*
$vis static progmem string $name = $value ;
}
// Recursive call to allow multiple items in macro invocation
$crate::progmem!{
$($rest)*
}
};
// Catch "hand" strings rule, use the above special rule instead
(
$( #[ $attr:meta ] )*
$vis:vis static progmem $name:ident : $( avr_progmem::string:: )? LoadedString < $ty:literal > = $( avr_progmem::string:: )? LoadedString :: new ( $value:expr ) $( . unwrap () $(@ $unwrapped:ident)? )? ;
$($rest:tt)*
) => {
// Make this a hard compile-time error.
::core::compile_error!("Prefer using the special `PmString` rule with the `string` keyword.");
::core::compile_error!(concat!("Use instead: ", stringify!($vis), " static progmem string ", stringify!($name), " = ..."));
// Emit a dummy to suppress errors where `$name` is used
static $name : $crate::wrapper::ProgMem< $crate::string::LoadedString< $ty > > = todo!();
// Recursive call to allow multiple items in macro invocation
$crate::progmem!{
$($rest)*
}
};
// Catch references rule, reference are evil!
// (well actually they are not, but most likely using them *is* a mistake)
(
$( #[ $attr:meta ] )*
$vis:vis static progmem $name:ident : & $ty:ty = $value:expr ;
$($rest:tt)*
) => {
// Make this a hard compile-time error
::core::compile_error!("Do not use a reference type for progmem, because this way only the reference itself would be in progmem, whereas the underlying data would still be in the normal data domain!");
// Emit a dummy to suppress errors where `$name` is used
static $name : & $ty = todo!();
// Recursive call to allow multiple items in macro invocation
$crate::progmem!{
$($rest)*
}
};
// Standard rule
(
$( #[ $attr:meta ] )*
$vis:vis static progmem $( < const $size_name:ident : usize > )? $name:ident : $ty:ty = $value:expr ;
$($rest:tt)*
) => {
// Crate the progmem static via internal macro
$crate::progmem_internal!{
$(#[$attr])* $vis static progmem $( < const $size_name : usize > )? $name : $ty = $value;
}
// Recursive call to allow multiple items in macro invocation
$crate::progmem!{
$($rest)*
}
};
// Empty rule
() => ()
}
#[doc(hidden)]
pub const fn array_from_str<const N: usize>(s: &str) -> [u8; N] {
let array_ref = crate::string::from_slice::array_ref_try_from_slice(s.as_bytes());
match array_ref {
Ok(r) => *r,
Err(_) => panic!("Invalid array size"),
}
}
/// Only for internal use. Use the `progmem!` macro instead.
#[doc(hidden)]
#[macro_export]
macro_rules! progmem_internal {
// The string rule creating the progmem string static via `PmString`
{
$( #[ $attr:meta ] )*
$vis:vis static progmem string $name:ident = $value:expr ;
} => {
// User attributes
$(#[$attr])*
// The facade static definition, this only contains a pointer and thus
// is NOT in progmem, which in turn makes it safe & sound to access this
// facade.
$vis static $name: $crate::string::PmString<{
// This bit runs at compile-time
let s: &str = $value;
s.len()
}> = {
// This inner hidden static contains the actual real raw value.
//
// SAFETY: it must be stored in the progmem or text section!
// The `link_section` lets us define that:
#[cfg_attr(target_arch = "avr", link_section = ".progmem.data")]
static VALUE: [u8; {
// This bit runs at compile-time
let s: &str = $value;
s.len()
}] = $crate::wrapper::array_from_str( $value );
let pm = unsafe {
// SAFETY: This call is sound because we ensure with the above
// `link_section` attribute on `VALUE` that it is indeed
// in the progmem section.
$crate::wrapper::ProgMem::new(
::core::ptr::addr_of!(VALUE)
)
};
// Just return the PmString wrapper around the local static
unsafe {
// SAFETY: This call is sound, because we started out with a
// `&str` thus the conent of `VALUE` must be valid UTF-8
$crate::string::PmString::new(
pm
)
}
};
};
// The rule creating an auto-sized progmem static via `ProgMem`
{
$( #[ $attr:meta ] )*
$vis:vis static progmem < const $size_name:ident : usize > $name:ident : $ty:ty = $value:expr ;
} => {
// Create a constant with the size of the value, which is retrieved
// via `SizedOwned` on the value, assuming it is an array of sorts.
//#[doc = concat!("Size of [", stringify!( $name ))]
$vis const $size_name : usize = {
// This bit is a bit hacky, we just hope that the type of `$value`
// has some `len` method.
$value.len()
};
// Just a normal prgomem static, `$ty` may use the above constant
$crate::progmem_internal!{
$( #[ $attr ] )*
$vis static progmem $name : $ty = $value ;
}
};
// The normal rule creating a progmem static via `ProgMem`
{
$( #[ $attr:meta ] )*
$vis:vis static progmem $name:ident : $ty:ty = $value:expr ;
} => {
// User attributes
$(#[$attr])*
// The facade static definition, this only contains a pointer and thus
// is NOT in progmem, which in turn makes it safe & sound to access this
// facade.
$vis static $name: $crate::wrapper::ProgMem<$ty> = {
// This inner hidden static contains the actual real raw value.
//
// SAFETY: it must be stored in the progmem or text section!
// The `link_section` lets us define that:
#[cfg_attr(target_arch = "avr", link_section = ".progmem.data")]
static VALUE: $ty = $value;
unsafe {
// SAFETY: This call is sound because we ensure with the above
// `link_section` attribute on `VALUE` that it is indeed
// in the progmem section.
$crate::wrapper::ProgMem::new(
::core::ptr::addr_of!(VALUE)
)
}
};
};
}
/// ```compile_fail
/// use avr_progmem::progmem;
/// progmem! {
/// static progmem AREF: &str = "Sometext";
/// }
/// ```
#[cfg(doctest)]
pub struct ProgMemReferenceTest;
/// ```compile_fail
/// use avr_progmem::progmem;
/// progmem! {
/// // Should notify that we should use the `progmem string` rule instead
/// static progmem HAND_STRING: LoadedString<34> =
/// LoadedString::new("hand crafted progmem loaded string").unwrap();
/// }
/// ```
#[cfg(doctest)]
pub struct HandStringTest;