Expand description
AvocadoDB Core Engine
The deterministic context compiler that fixes RAG.
AvocadoDB replaces traditional vector databases’ chaotic “top-k” retrieval with deterministic, citation-backed context generation using span-based compilation.
§Key Features
- 100% Deterministic: Same query → same context, every time
- Citation-Backed: Every piece of context has exact line number citations
- Token Efficient: 95%+ token budget utilization (vs 60-70% in RAG)
- Fast: < 500ms for 8K token context
§Architecture
Query → Embed → [Semantic Search + Lexical Search] → Hybrid Fusion
→ MMR Diversification → Token Packing → Deterministic Sort → WorkingSetRe-exports§
pub use types::Artifact;pub use types::Citation;pub use types::CompilerConfig;pub use types::Error;pub use types::Result;pub use types::ScoredSpan;pub use types::Span;pub use types::WorkingSet;pub use types::Session;pub use types::Message;pub use types::MessageRole;pub use types::SessionWorkingSet;pub use types::Manifest;pub use types::ChunkingParams;pub use types::IndexParams;pub use types::ExplainPlan;pub use types::ExplainCandidate;pub use types::ExplainTiming;pub use types::ExplainThresholds;pub use types::IngestAction;pub use types::GoldenQuery;pub use types::EvalResult;pub use types::EvalSummary;pub use types::WorkingSetDiff;pub use types::DiffEntry;pub use types::RerankEntry;pub use session::SessionManager;pub use session::SessionReplay;pub use session::SessionTurn;
Modules§
- approx
- compiler
- Context compilation engine
- db
- Database operations using SQLite
- diff
- Working set diff module
- embedding
- Embedding generation with local and OpenAI support
- eval
- Evaluation module for retrieval quality metrics
- index
- In-memory vector index for similarity search
- session
- High-level session management API
- span
- Span extraction from documents
- types
- Core data types for AvocadoDB
Constants§
- VERSION
- The version of AvocadoDB