avila_telemetry/models/
arima.rs

1//! ARIMA (AutoRegressive Integrated Moving Average) model
2
3use crate::forecasting::{ForecastResult, Forecaster};
4use crate::{Result, TelemetryError, TimeSeries};
5
6/// ARIMA model parameters
7#[derive(Debug, Clone)]
8pub struct ARIMAParams {
9    /// AR order (p)
10    pub p: usize,
11    /// Differencing order (d)
12    pub d: usize,
13    /// MA order (q)
14    pub q: usize,
15}
16
17/// ARIMA model
18pub struct ARIMA {
19    params: ARIMAParams,
20    ar_coeffs: Vec<f64>,
21    ma_coeffs: Vec<f64>,
22    fitted: bool,
23    differenced_data: Vec<f64>,
24}
25
26impl ARIMA {
27    /// Create a new ARIMA model
28    pub fn new(p: usize, d: usize, q: usize) -> Self {
29        Self {
30            params: ARIMAParams { p, d, q },
31            ar_coeffs: vec![0.0; p],
32            ma_coeffs: vec![0.0; q],
33            fitted: false,
34            differenced_data: Vec::new(),
35        }
36    }
37
38    /// Difference the time series d times
39    fn difference(&self, data: &[f64]) -> Vec<f64> {
40        let mut result = data.to_vec();
41
42        for _ in 0..self.params.d {
43            result = result.windows(2).map(|w| w[1] - w[0]).collect();
44        }
45
46        result
47    }
48
49    /// Integrate (cumulative sum) the differenced data
50    fn _integrate(&self, differenced: &[f64], original_data: &[f64]) -> Vec<f64> {
51        let mut result = differenced.to_vec();
52
53        for _ in 0..self.params.d {
54            let mut integrated = Vec::with_capacity(result.len() + 1);
55            let start_value = if self.params.d == 1 {
56                *original_data.last().unwrap()
57            } else {
58                0.0
59            };
60            integrated.push(start_value);
61
62            for &val in &result {
63                integrated.push(integrated.last().unwrap() + val);
64            }
65
66            result = integrated;
67        }
68
69        result
70    }
71
72    /// Simple AR coefficient estimation using Yule-Walker equations
73    fn estimate_ar_coeffs(&mut self, data: &[f64]) -> Result<()> {
74        if data.len() <= self.params.p {
75            return Err(TelemetryError::InsufficientData(
76                "Not enough data for AR estimation".to_string(),
77            ));
78        }
79
80        // Simplified estimation: use least squares approximation
81        for i in 0..self.params.p {
82            let lag = i + 1;
83            let mut sum_xy = 0.0;
84            let mut sum_x2 = 0.0;
85
86            for j in lag..data.len() {
87                sum_xy += data[j] * data[j - lag];
88                sum_x2 += data[j - lag] * data[j - lag];
89            }
90
91            self.ar_coeffs[i] = if sum_x2 != 0.0 { sum_xy / sum_x2 } else { 0.0 };
92        }
93
94        Ok(())
95    }
96
97    /// Simple MA coefficient estimation
98    fn estimate_ma_coeffs(&mut self, _residuals: &[f64]) -> Result<()> {
99        // Simplified: initialize with small random values
100        for i in 0..self.params.q {
101            self.ma_coeffs[i] = 0.1 * (i as f64 + 1.0) / (self.params.q as f64);
102        }
103        Ok(())
104    }
105}
106
107impl Forecaster for ARIMA {
108    fn fit(&mut self, ts: &TimeSeries) -> Result<()> {
109        if ts.len() < self.params.p + self.params.d + self.params.q + 1 {
110            return Err(TelemetryError::InsufficientData(
111                "Insufficient data for ARIMA model".to_string(),
112            ));
113        }
114
115        // Difference the data
116        self.differenced_data = self.difference(&ts.values);
117
118        // Clone data for coefficient estimation
119        let differenced_clone = self.differenced_data.clone();
120
121        // Estimate AR coefficients
122        self.estimate_ar_coeffs(&differenced_clone)?;
123
124        // Calculate residuals (simplified)
125        let residuals = self.differenced_data.clone();
126
127        // Estimate MA coefficients
128        self.estimate_ma_coeffs(&residuals)?;
129
130        self.fitted = true;
131        Ok(())
132    }
133
134    fn forecast(&self, steps: usize) -> Result<ForecastResult> {
135        if !self.fitted {
136            return Err(TelemetryError::ModelError(
137                "Model must be fitted before forecasting".to_string(),
138            ));
139        }
140
141        let mut predictions = Vec::with_capacity(steps);
142        let mut history = self.differenced_data.clone();
143
144        for _ in 0..steps {
145            let mut pred = 0.0;
146
147            // AR component
148            for (i, &coeff) in self.ar_coeffs.iter().enumerate() {
149                if i < history.len() {
150                    pred += coeff * history[history.len() - 1 - i];
151                }
152            }
153
154            predictions.push(pred);
155            history.push(pred);
156        }
157
158        // Note: This is simplified - should integrate back
159        Ok(ForecastResult {
160            predictions,
161            lower_bound: None,
162            upper_bound: None,
163            confidence: 0.75,
164        })
165    }
166
167    fn forecast_with_confidence(
168        &self,
169        steps: usize,
170        confidence_level: f64,
171    ) -> Result<ForecastResult> {
172        let base_forecast = self.forecast(steps)?;
173
174        // Simple confidence interval calculation
175        let std_dev = 1.0; // Simplified - should calculate from residuals
176        let z_score = if confidence_level >= 0.95 {
177            1.96
178        } else {
179            1.645
180        };
181        let margin = z_score * std_dev;
182
183        let lower_bound = base_forecast
184            .predictions
185            .iter()
186            .map(|&v| v - margin)
187            .collect();
188
189        let upper_bound = base_forecast
190            .predictions
191            .iter()
192            .map(|&v| v + margin)
193            .collect();
194
195        Ok(ForecastResult {
196            predictions: base_forecast.predictions,
197            lower_bound: Some(lower_bound),
198            upper_bound: Some(upper_bound),
199            confidence: confidence_level,
200        })
201    }
202}
203
204#[cfg(test)]
205mod tests {
206    use super::*;
207
208    #[test]
209    fn test_arima_creation() {
210        let model = ARIMA::new(1, 1, 1);
211        assert_eq!(model.params.p, 1);
212        assert_eq!(model.params.d, 1);
213        assert_eq!(model.params.q, 1);
214    }
215
216    #[test]
217    fn test_arima_fit_and_forecast() {
218        let data: Vec<f64> = (1..=50).map(|x| x as f64).collect();
219        let ts = TimeSeries::new(data);
220
221        let mut model = ARIMA::new(2, 1, 1);
222        model.fit(&ts).unwrap();
223
224        let forecast = model.forecast(5).unwrap();
225        assert_eq!(forecast.predictions.len(), 5);
226    }
227}