1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use core;

use super::reduce::Reduce;

/// Calculate the minimum of `a` and `b`.
fn min(a: f64, b: f64) -> f64 {
    a.min(b)
}

/// Calculate the maximum of `a` and `b`.
fn max(a: f64, b: f64) -> f64 {
    a.max(b)
}

/// Estimate the minimum of a sequence of numbers ("population").
///
///
/// ## Example
///
/// ```
/// use average::Min;
///
/// let a: Min = (1..6).map(Into::into).collect();
/// println!("The minimum is {}.", a.min());
/// ```
#[derive(Debug, Clone)]
pub struct Min {
    r: Reduce<fn(f64, f64) -> f64>,
}

impl Min {
    /// Create a new minium estimator from a given value.
    #[inline]
    pub fn from_value(x: f64) -> Min {
        Min {
            r: Reduce::from_value_and_fn(x, min),
        }
    }

    /// Create a new minimum estimator.
    #[inline]
    pub fn new() -> Min {
        Min::from_value(::core::f64::INFINITY)
    }

    /// Add an observation sampled from the population.
    #[inline]
    pub fn add(&mut self, x: f64) {
        self.r.add(x);
    }

    /// Estimate the minium of the population.
    #[inline]
    pub fn min(&self) -> f64 {
        self.r.reduction()
    }

    /// Merge another sample into this one.
    ///
    ///
    /// ## Example
    ///
    /// ```
    /// use average::Min;
    ///
    /// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
    /// let (left, right) = sequence.split_at(3);
    /// let min_total: Min = sequence.iter().map(|x| *x).collect();
    /// let mut min_left: Min = left.iter().map(|x| *x).collect();
    /// let min_right: Min = right.iter().map(|x| *x).collect();
    /// min_left.merge(&min_right);
    /// assert_eq!(min_total.min(), min_left.min());
    /// ```
    #[inline]
    pub fn merge(&mut self, other: &Min) {
        self.r.merge(&other.r);
    }
}

impl core::iter::FromIterator<f64> for Min {
    fn from_iter<T>(iter: T) -> Min
        where T: IntoIterator<Item=f64>
    {
        let mut a = Min::new();
        for i in iter {
            a.add(i);
        }
        a
    }
}

/// Estimate the maximum of a sequence of numbers ("population").
///
///
/// ## Example
///
/// ```
/// use average::Max;
///
/// let a: Max = (1..6).map(Into::into).collect();
/// assert_eq!(a.max(), 5.);
/// ```
#[derive(Debug, Clone)]
pub struct Max {
    r: Reduce<fn(f64, f64) -> f64>,
}

impl Max {
    /// Create a new maxium estimator from a given value.
    #[inline]
    pub fn from_value(x: f64) -> Max {
        Max {
            r: Reduce::from_value_and_fn(x, max),
        }
    }

    /// Create a new maximum estimator.
    #[inline]
    pub fn new() -> Max {
        Max::from_value(::core::f64::NEG_INFINITY)
    }

    /// Add an observation sampled from the population.
    #[inline]
    pub fn add(&mut self, x: f64) {
        self.r.add(x);
    }

    /// Estimate the maxium of the population.
    #[inline]
    pub fn max(&self) -> f64 {
        self.r.reduction()
    }

    /// Merge another sample into this one.
    ///
    ///
    /// ## Example
    ///
    /// ```
    /// use average::Max;
    ///
    /// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
    /// let (left, right) = sequence.split_at(3);
    /// let max_total: Max = sequence.iter().map(|x| *x).collect();
    /// let mut max_left: Max = left.iter().map(|x| *x).collect();
    /// let max_right: Max = right.iter().map(|x| *x).collect();
    /// max_left.merge(&max_right);
    /// assert_eq!(max_total.max(), max_left.max());
    /// ```
    #[inline]
    pub fn merge(&mut self, other: &Max) {
        self.r.merge(&other.r);
    }
}

impl core::iter::FromIterator<f64> for Max {
    fn from_iter<T>(iter: T) -> Max
        where T: IntoIterator<Item=f64>
    {
        let mut a = Max::new();
        for i in iter {
            a.add(i);
        }
        a
    }
}