autosar_data_abstraction/communication/signal/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
use crate::communication::{
    AbstractPhysicalChannel, CommunicationDirection, DataTransformation, EndToEndTransformationISignalProps,
    PhysicalChannel, SomeIpTransformationISignalProps, TransformationISignalPropsConfig, TransformationTechnology,
};
use crate::datatype::{CompuMethod, DataConstr, SwBaseType, Unit};
use crate::{
    abstraction_element, communication::ISignalToIPduMapping, make_unique_name, reflist_iterator, AbstractionElement,
    ArPackage, AutosarAbstractionError, EcuInstance,
};
use autosar_data::{AutosarDataError, Element, ElementName, EnumItem, WeakElement};

/// Signal of the Interaction Layer
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ISignal(Element);
abstraction_element!(ISignal, ISignal);

impl ISignal {
    pub(crate) fn new(
        name: &str,
        package: &ArPackage,
        bit_length: u64,
        syssignal: &SystemSignal,
        datatype: Option<&SwBaseType>,
    ) -> Result<Self, AutosarAbstractionError> {
        if bit_length > u64::from(u32::MAX) * 8 {
            // max bit_length is 2^32 bytes
            return Err(AutosarAbstractionError::InvalidParameter(format!(
                "isignal {name}: bit length {bit_length} is too big"
            )));
        }

        let pkg_elements = package.element().get_or_create_sub_element(ElementName::Elements)?;
        let elem_isignal = pkg_elements.create_named_sub_element(ElementName::ISignal, name)?;

        elem_isignal
            .create_sub_element(ElementName::Length)?
            .set_character_data(bit_length.to_string())?;
        elem_isignal
            .create_sub_element(ElementName::SystemSignalRef)?
            .set_reference_target(syssignal.element())?;
        elem_isignal
            .create_sub_element(ElementName::DataTypePolicy)?
            .set_character_data(EnumItem::Override)?;

        let isignal = Self(elem_isignal);

        if let Some(datatype) = datatype {
            isignal.set_datatype(datatype)?;
        }

        Ok(isignal)
    }

    /// set the data type for this signal
    pub fn set_datatype(&self, datatype: &SwBaseType) -> Result<(), AutosarAbstractionError> {
        self.element()
            .get_or_create_sub_element(ElementName::NetworkRepresentationProps)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_or_create_sub_element(ElementName::BaseTypeRef)?
            .set_reference_target(datatype.element())?;
        Ok(())
    }

    /// get the length of this signal in bits
    #[must_use]
    pub fn length(&self) -> Option<u64> {
        self.element()
            .get_sub_element(ElementName::Length)?
            .character_data()?
            .parse_integer()
    }

    /// get the system signal that corresponds to this isignal
    #[must_use]
    pub fn system_signal(&self) -> Option<SystemSignal> {
        self.element()
            .get_sub_element(ElementName::SystemSignalRef)?
            .get_reference_target()
            .ok()?
            .try_into()
            .ok()
    }

    /// an iterator over all `ISignalToIPduMapping` for this signal
    ///
    /// Usually a signal should only be mapped to a single PDU,
    /// so this iterator is expected to return either zero or one item in ordinary cases.
    pub fn mappings(&self) -> impl Iterator<Item = ISignalToIPduMapping> {
        let model_result = self.element().model();
        let path_result = self.element().path();
        if let (Ok(model), Ok(path)) = (model_result, path_result) {
            let reflist = model.get_references_to(&path);
            ISignalToIPduMappingsIterator::new(reflist)
        } else {
            ISignalToIPduMappingsIterator::new(vec![])
        }
    }

    /// get the signal group that contains this signal, if any
    pub fn signal_group(&self) -> Option<ISignalGroup> {
        let path = self.element().path().ok()?;
        let referrers = self.element().model().ok()?.get_references_to(&path);

        for elem in referrers
            .iter()
            .filter_map(|weak| weak.upgrade().and_then(|elem| elem.named_parent().ok().flatten()))
        {
            if let Ok(grp) = ISignalGroup::try_from(elem) {
                return Some(grp);
            }
        }
        None
    }

    /// add a data transformation to this signal
    pub fn add_data_transformation(
        &self,
        data_transformation: &DataTransformation,
    ) -> Result<(), AutosarAbstractionError> {
        let transformations = self
            .element()
            .get_or_create_sub_element(ElementName::DataTransformations)?;
        transformations
            .create_sub_element(ElementName::DataTransformationRefConditional)?
            .create_sub_element(ElementName::DataTransformationRef)?
            .set_reference_target(data_transformation.element())?;

        Ok(())
    }

    /// get all data transformations that are applied to this signal
    pub fn data_transformations(&self) -> impl Iterator<Item = DataTransformation> {
        self.element()
            .get_sub_element(ElementName::DataTransformations)
            .into_iter()
            .flat_map(|elem| elem.sub_elements())
            .filter_map(|elem| elem.get_sub_element(ElementName::DataTransformationRef))
            .filter_map(|elem| elem.get_reference_target().ok())
            .filter_map(|elem| elem.try_into().ok())
    }

    /// add transformation properties to this signal
    pub fn add_transformation_isignal_props(
        &self,
        transformer: &TransformationTechnology,
        props: &TransformationISignalPropsConfig,
    ) -> Result<(), AutosarAbstractionError> {
        let tsp = self
            .element()
            .get_or_create_sub_element(ElementName::TransformationISignalPropss)?;

        match props {
            TransformationISignalPropsConfig::SomeIp(props) => {
                SomeIpTransformationISignalProps::new(tsp, transformer, props)?;
            }
            TransformationISignalPropsConfig::E2E(props) => {
                EndToEndTransformationISignalProps::new(tsp, transformer, props)?;
            }
        }

        Ok(())
    }

    /// get all transformation properties that are applied to this signal
    pub fn transformation_isignal_props(&self) -> impl Iterator<Item = TransformationISignalPropsConfig> {
        self.element()
            .get_sub_element(ElementName::TransformationISignalPropss)
            .into_iter()
            .flat_map(|elem| elem.sub_elements())
            .filter_map(|elem| match elem.element_name() {
                ElementName::SomeipTransformationISignalProps => {
                    let inner_elem = elem
                        .get_sub_element(ElementName::SomeipTransformationISignalPropsVariants)?
                        .get_sub_element(ElementName::SomeipTransformationISignalPropsConditional)?;
                    Some(TransformationISignalPropsConfig::SomeIp(
                        SomeIpTransformationISignalProps(inner_elem).config(),
                    ))
                }
                ElementName::EndToEndTransformationISignalProps => {
                    let inner_elem = elem
                        .get_sub_element(ElementName::EndToEndTransformationISignalPropsVariants)?
                        .get_sub_element(ElementName::EndToEndTransformationISignalPropsConditional)?;
                    Some(TransformationISignalPropsConfig::E2E(
                        EndToEndTransformationISignalProps(inner_elem).config(),
                    ))
                }
                _ => None,
            })
    }
}

//##################################################################

/// The system signal represents the communication system's view of data exchanged between SW components which reside on different ECUs
///
/// Use [`ArPackage::create_system_signal`] to create a new system signal
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SystemSignal(Element);
abstraction_element!(SystemSignal, SystemSignal);

impl SystemSignal {
    /// Create a new system signal in the given package
    pub(crate) fn new(name: &str, package: &ArPackage) -> Result<Self, AutosarAbstractionError> {
        let package_elements = package.element().get_or_create_sub_element(ElementName::Elements)?;
        let elem_syssignal = package_elements.create_named_sub_element(ElementName::SystemSignal, name)?;

        Ok(Self(elem_syssignal))
    }

    /// get the signal group that contains this signal
    pub fn signal_group(&self) -> Option<SystemSignalGroup> {
        let path = self.element().path().ok()?;
        let referrers = self.element().model().ok()?.get_references_to(&path);
        for elem in referrers
            .iter()
            .filter_map(WeakElement::upgrade)
            .filter_map(|refelem| refelem.named_parent().ok().flatten())
        {
            if let Ok(grp) = SystemSignalGroup::try_from(elem) {
                return Some(grp);
            }
        }
        None
    }

    /// set the unit for this signal
    pub fn set_unit(&self, unit: &Unit) -> Result<(), AutosarAbstractionError> {
        self.element()
            .get_or_create_sub_element(ElementName::PhysicalProps)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_or_create_sub_element(ElementName::UnitRef)?
            .set_reference_target(unit.element())?;
        Ok(())
    }

    /// get the unit for this signal
    #[must_use]
    pub fn unit(&self) -> Option<Unit> {
        self.element()
            .get_sub_element(ElementName::PhysicalProps)?
            .get_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_sub_element(ElementName::UnitRef)?
            .get_reference_target()
            .ok()?
            .try_into()
            .ok()
    }

    /// set the compu method for this signal
    pub fn set_compu_method(&self, compu_method: &CompuMethod) -> Result<(), AutosarAbstractionError> {
        self.element()
            .get_or_create_sub_element(ElementName::PhysicalProps)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_or_create_sub_element(ElementName::CompuMethodRef)?
            .set_reference_target(compu_method.element())?;
        Ok(())
    }

    /// get the compu method for this signal
    #[must_use]
    pub fn compu_method(&self) -> Option<CompuMethod> {
        self.element()
            .get_sub_element(ElementName::PhysicalProps)?
            .get_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_sub_element(ElementName::CompuMethodRef)?
            .get_reference_target()
            .ok()?
            .try_into()
            .ok()
    }

    /// set the data constraint for this signal
    pub fn set_data_constr(&self, data_constr: &DataConstr) -> Result<(), AutosarAbstractionError> {
        self.element()
            .get_or_create_sub_element(ElementName::PhysicalProps)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_or_create_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_or_create_sub_element(ElementName::DataConstrRef)?
            .set_reference_target(data_constr.element())?;
        Ok(())
    }

    /// get the data constraint for this signal
    #[must_use]
    pub fn data_constr(&self) -> Option<DataConstr> {
        self.element()
            .get_sub_element(ElementName::PhysicalProps)?
            .get_sub_element(ElementName::SwDataDefPropsVariants)?
            .get_sub_element(ElementName::SwDataDefPropsConditional)?
            .get_sub_element(ElementName::DataConstrRef)?
            .get_reference_target()
            .ok()?
            .try_into()
            .ok()
    }
}

//##################################################################

/// An `ISignalGroup` groups signals that should always be kept together
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ISignalGroup(Element);
abstraction_element!(ISignalGroup, ISignalGroup);

impl ISignalGroup {
    pub(crate) fn new(
        name: &str,
        package: &ArPackage,
        system_signal_group: &SystemSignalGroup,
    ) -> Result<Self, AutosarAbstractionError> {
        let sig_pkg_elements = package.element().get_or_create_sub_element(ElementName::Elements)?;
        let elem_isiggrp = sig_pkg_elements.create_named_sub_element(ElementName::ISignalGroup, name)?;

        elem_isiggrp
            .create_sub_element(ElementName::SystemSignalGroupRef)?
            .set_reference_target(system_signal_group.element())?;

        Ok(Self(elem_isiggrp))
    }

    /// Add a signal to the signal group
    pub fn add_signal(&self, signal: &ISignal) -> Result<(), AutosarAbstractionError> {
        // make sure the relation of signal to signal group is maintained for the referenced system signal
        let syssig_grp_of_signal = signal.system_signal().and_then(|ss| ss.signal_group());
        let syssig_grp = self.system_signal_group();
        if syssig_grp != syssig_grp_of_signal {
            return Err(AutosarAbstractionError::InvalidParameter(
                "The isignal and the system signal must both be part of corresponding signal groups".to_string(),
            ));
        }

        let isrefs = self.element().get_or_create_sub_element(ElementName::ISignalRefs)?;

        // check if the signal already exists in isrefs?

        isrefs
            .create_sub_element(ElementName::ISignalRef)?
            .set_reference_target(signal.element())?;

        Ok(())
    }

    /// get the system signal group that is associated with this signal group
    #[must_use]
    pub fn system_signal_group(&self) -> Option<SystemSignalGroup> {
        self.element()
            .get_sub_element(ElementName::SystemSignalGroupRef)?
            .get_reference_target()
            .ok()?
            .try_into()
            .ok()
    }

    /// Iterator over all [`ISignal`]s in this group
    ///
    /// # Example
    pub fn signals(&self) -> impl Iterator<Item = ISignal> {
        self.element()
            .get_sub_element(ElementName::ISignalRefs)
            .into_iter()
            .flat_map(|elem| elem.sub_elements())
            .filter_map(|elem| {
                elem.get_reference_target()
                    .ok()
                    .and_then(|elem| ISignal::try_from(elem).ok())
            })
    }

    /// add a data transformation to this signal group
    pub fn add_data_transformation(
        &self,
        data_transformation: &DataTransformation,
    ) -> Result<(), AutosarAbstractionError> {
        let cbst = self
            .element()
            .get_or_create_sub_element(ElementName::ComBasedSignalGroupTransformations)?;
        cbst.create_sub_element(ElementName::DataTransformationRefConditional)?
            .create_sub_element(ElementName::DataTransformationRef)?
            .set_reference_target(data_transformation.element())?;
        Ok(())
    }

    /// get all data transformations that are applied to this signal group
    pub fn data_transformations(&self) -> impl Iterator<Item = DataTransformation> {
        self.element()
            .get_sub_element(ElementName::ComBasedSignalGroupTransformations)
            .into_iter()
            .flat_map(|elem| elem.sub_elements())
            .filter_map(|elem| elem.get_sub_element(ElementName::DataTransformationRef))
            .filter_map(|elem| elem.get_reference_target().ok())
            .filter_map(|elem| elem.try_into().ok())
    }

    /// add transformation properties to this signal group
    pub fn add_transformation_isignal_props(
        &self,
        transformer: &TransformationTechnology,
        props: &TransformationISignalPropsConfig,
    ) -> Result<(), AutosarAbstractionError> {
        let tsp = self
            .element()
            .get_or_create_sub_element(ElementName::TransformationISignalPropss)?;

        match props {
            TransformationISignalPropsConfig::SomeIp(props) => {
                SomeIpTransformationISignalProps::new(tsp, transformer, props)?;
            }
            TransformationISignalPropsConfig::E2E(props) => {
                EndToEndTransformationISignalProps::new(tsp, transformer, props)?;
            }
        }

        Ok(())
    }

    /// get all transformation properties that are applied to this signal group
    pub fn transformation_isignal_props(&self) -> impl Iterator<Item = TransformationISignalPropsConfig> {
        self.element()
            .get_sub_element(ElementName::TransformationISignalPropss)
            .into_iter()
            .flat_map(|elem| elem.sub_elements())
            .filter_map(|elem| match elem.element_name() {
                ElementName::SomeipTransformationISignalProps => {
                    let inner_elem = elem
                        .get_sub_element(ElementName::SomeipTransformationISignalPropsVariants)?
                        .get_sub_element(ElementName::SomeipTransformationISignalPropsConditional)?;
                    Some(TransformationISignalPropsConfig::SomeIp(
                        SomeIpTransformationISignalProps(inner_elem).config(),
                    ))
                }
                ElementName::EndToEndTransformationISignalProps => {
                    let inner_elem = elem
                        .get_sub_element(ElementName::EndToEndTransformationISignalPropsVariants)?
                        .get_sub_element(ElementName::EndToEndTransformationISignalPropsConditional)?;
                    Some(TransformationISignalPropsConfig::E2E(
                        EndToEndTransformationISignalProps(inner_elem).config(),
                    ))
                }
                _ => None,
            })
    }
}

//##################################################################

/// A signal group refers to a set of signals that shall always be kept together. A signal group is used to
/// guarantee the atomic transfer of AUTOSAR composite data types.
///
/// Use [`ArPackage::create_system_signal_group`] to create a new system signal group
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SystemSignalGroup(Element);
abstraction_element!(SystemSignalGroup, SystemSignalGroup);

impl SystemSignalGroup {
    /// Create a new system signal group
    pub(crate) fn new(name: &str, package: &ArPackage) -> Result<Self, AutosarAbstractionError> {
        let pkg_elements = package.element().get_or_create_sub_element(ElementName::Elements)?;
        let signalgroup = pkg_elements.create_named_sub_element(ElementName::SystemSignalGroup, name)?;

        Ok(Self(signalgroup))
    }

    /// Add a signal to the signal group
    pub fn add_signal(&self, signal: &SystemSignal) -> Result<(), AutosarAbstractionError> {
        let ssrefs = self
            .element()
            .get_or_create_sub_element(ElementName::SystemSignalRefs)?;

        // check if the signal already exists in ssrefs?

        ssrefs
            .create_sub_element(ElementName::SystemSignalRef)?
            .set_reference_target(signal.element())?;

        Ok(())
    }
}

//##################################################################

/// an `ISignalTriggering` triggers a signal in a PDU
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ISignalTriggering(Element);
abstraction_element!(ISignalTriggering, ISignalTriggering);

impl ISignalTriggering {
    pub(crate) fn new(signal: &ISignal, channel: &PhysicalChannel) -> Result<Self, AutosarAbstractionError> {
        let model = channel.element().model()?;
        let base_path = channel.element().path()?;
        let signal_name = signal
            .name()
            .ok_or(AutosarAbstractionError::InvalidParameter("invalid signal".to_string()))?;
        let pt_name = format!("ST_{signal_name}");
        let pt_name = make_unique_name(&model, &base_path, &pt_name);

        let triggerings = channel
            .element()
            .get_or_create_sub_element(ElementName::ISignalTriggerings)?;
        let st_elem = triggerings.create_named_sub_element(ElementName::ISignalTriggering, &pt_name)?;
        st_elem
            .create_sub_element(ElementName::ISignalRef)?
            .set_reference_target(signal.element())?;

        let pt = Self(st_elem);

        Ok(pt)
    }

    pub(crate) fn new_group(
        signal_group: &ISignalGroup,
        channel: &PhysicalChannel,
    ) -> Result<Self, AutosarAbstractionError> {
        let model = channel.element().model()?;
        let base_path = channel.element().path()?;
        let signal_name = signal_group.name().ok_or(AutosarAbstractionError::InvalidParameter(
            "invalid signal group".to_string(),
        ))?;
        let pt_name = format!("ST_{signal_name}");
        let pt_name = make_unique_name(&model, &base_path, &pt_name);

        let triggerings = channel
            .element()
            .get_or_create_sub_element(ElementName::ISignalTriggerings)?;
        let st_elem = triggerings.create_named_sub_element(ElementName::ISignalTriggering, &pt_name)?;
        st_elem
            .create_sub_element(ElementName::ISignalGroupRef)?
            .set_reference_target(signal_group.element())?;

        let pt = Self(st_elem);

        Ok(pt)
    }

    /// get the physical channel that contains this signal triggering
    pub fn physical_channel(&self) -> Result<PhysicalChannel, AutosarAbstractionError> {
        let channel_elem = self.element().named_parent()?.ok_or(AutosarDataError::ItemDeleted)?;
        PhysicalChannel::try_from(channel_elem)
    }

    /// connect this signal triggering to an ECU
    pub fn connect_to_ecu(
        &self,
        ecu: &EcuInstance,
        direction: CommunicationDirection,
    ) -> Result<ISignalPort, AutosarAbstractionError> {
        for signal_port in self.signal_ports() {
            if let (Some(existing_ecu), Some(existing_direction)) =
                (signal_port.ecu(), signal_port.communication_direction())
            {
                if existing_ecu == *ecu && existing_direction == direction {
                    return Ok(signal_port);
                }
            }
        }

        let channel = self.physical_channel()?;
        let connector = channel
            .ecu_connector(ecu)
            .ok_or(AutosarAbstractionError::InvalidParameter(
                "The ECU is not connected to the channel".to_string(),
            ))?;

        let name = self.name().ok_or(AutosarDataError::ItemDeleted)?;
        let suffix = match direction {
            CommunicationDirection::In => "Rx",
            CommunicationDirection::Out => "Tx",
        };
        let port_name = format!("{name}_{suffix}",);
        let sp_elem = connector
            .element()
            .get_or_create_sub_element(ElementName::EcuCommPortInstances)?
            .create_named_sub_element(ElementName::ISignalPort, &port_name)?;
        sp_elem
            .create_sub_element(ElementName::CommunicationDirection)?
            .set_character_data::<EnumItem>(direction.into())?;

        self.element()
            .get_or_create_sub_element(ElementName::ISignalPortRefs)?
            .create_sub_element(ElementName::ISignalPortRef)?
            .set_reference_target(&sp_elem)?;

        Ok(ISignalPort(sp_elem))
    }

    /// create an iterator over all signal ports that are connected to this signal triggering
    pub fn signal_ports(&self) -> impl Iterator<Item = ISignalPort> {
        self.element()
            .get_sub_element(ElementName::ISignalPortRefs)
            .into_iter()
            .flat_map(|elem| elem.sub_elements())
            .filter_map(|elem| {
                elem.get_reference_target()
                    .ok()
                    .and_then(|elem| ISignalPort::try_from(elem).ok())
            })
    }
}

//##################################################################

/// The `IPduPort` allows an ECU to send or receive a PDU
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct ISignalPort(Element);
abstraction_element!(ISignalPort, ISignalPort);

impl ISignalPort {
    /// get the ECU that is connected to this signal port
    #[must_use]
    pub fn ecu(&self) -> Option<EcuInstance> {
        let comm_connector_elem = self.element().named_parent().ok()??;
        let ecu_elem = comm_connector_elem.named_parent().ok()??;
        EcuInstance::try_from(ecu_elem).ok()
    }

    /// get the communication direction of this port
    #[must_use]
    pub fn communication_direction(&self) -> Option<CommunicationDirection> {
        self.element()
            .get_sub_element(ElementName::CommunicationDirection)?
            .character_data()?
            .enum_value()?
            .try_into()
            .ok()
    }
}

//##################################################################

/// The `TransferProperty` defines if or how the signal influences the transfer of the PDU
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum TransferProperty {
    /// The signal is pending; it does not trigger the transfer of the PDU
    Pending,
    /// The signal triggers the transfer of the PDU
    Triggered,
    /// The signal triggers the transfer of the PDU if the value changes
    TriggeredOnChange,
    /// The signal triggers the transfer of the PDU if the value changes without repetition
    TriggeredOnChangeWithoutRepetition,
    /// The signal triggers the transfer of the PDU without repetition
    TriggeredWithoutRepetition,
}

impl From<TransferProperty> for EnumItem {
    fn from(value: TransferProperty) -> Self {
        match value {
            TransferProperty::Pending => EnumItem::Pending,
            TransferProperty::Triggered => EnumItem::Triggered,
            TransferProperty::TriggeredOnChange => EnumItem::TriggeredOnChange,
            TransferProperty::TriggeredOnChangeWithoutRepetition => EnumItem::TriggeredOnChangeWithoutRepetition,
            TransferProperty::TriggeredWithoutRepetition => EnumItem::TriggeredWithoutRepetition,
        }
    }
}

impl TryFrom<EnumItem> for TransferProperty {
    type Error = AutosarAbstractionError;

    fn try_from(value: EnumItem) -> Result<Self, Self::Error> {
        match value {
            EnumItem::Pending => Ok(TransferProperty::Pending),
            EnumItem::Triggered => Ok(TransferProperty::Triggered),
            EnumItem::TriggeredOnChange => Ok(TransferProperty::TriggeredOnChange),
            EnumItem::TriggeredOnChangeWithoutRepetition => Ok(TransferProperty::TriggeredOnChangeWithoutRepetition),
            EnumItem::TriggeredWithoutRepetition => Ok(TransferProperty::TriggeredWithoutRepetition),
            _ => Err(AutosarAbstractionError::ValueConversionError {
                value: value.to_string(),
                dest: "TransferProperty".to_string(),
            }),
        }
    }
}

//##################################################################

reflist_iterator!(ISignalToIPduMappingsIterator, ISignalToIPduMapping);

//##################################################################

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        communication::{
            CanClusterSettings, DataTransformationSet, SomeIpMessageType, SomeIpTransformationISignalPropsConfig,
            SomeIpTransformationTechnologyConfig, TransformationTechnologyConfig,
        },
        datatype::{BaseTypeEncoding, CompuMethodContent, SwBaseType, Unit},
        ByteOrder, SystemCategory,
    };
    use autosar_data::{AutosarModel, AutosarVersion};

    #[test]
    fn test_signal() {
        let model = AutosarModel::new();
        let _file = model.create_file("test.arxml", AutosarVersion::LATEST).unwrap();
        let package = ArPackage::get_or_create(&model, "/test").unwrap();
        let system = package.create_system("system", SystemCategory::EcuExtract).unwrap();
        let unit = Unit::new("unit", &package, Some("Unit Name")).unwrap();
        let compu_method = CompuMethod::new("compu_method", &package, CompuMethodContent::Identical).unwrap();
        let data_constr = DataConstr::new("data_constr", &package).unwrap();
        let sw_base_type =
            SwBaseType::new("sw_base_type", &package, 8, BaseTypeEncoding::None, None, None, None).unwrap();

        let sys_signal = package.create_system_signal("sys_signal").unwrap();
        let signal = system
            .create_isignal("signal", &package, 8, &sys_signal, Some(&sw_base_type))
            .unwrap();

        sys_signal.set_unit(&unit).unwrap();
        sys_signal.set_compu_method(&compu_method).unwrap();
        sys_signal.set_data_constr(&data_constr).unwrap();

        assert_eq!(signal.length(), Some(8));
        assert_eq!(signal.system_signal(), Some(sys_signal.clone()));
        assert_eq!(sys_signal.unit(), Some(unit));
        assert_eq!(sys_signal.compu_method(), Some(compu_method));
        assert_eq!(sys_signal.data_constr(), Some(data_constr));

        // mappings
        assert_eq!(signal.mappings().count(), 0);
        let ipdu = system.create_isignal_ipdu("ipdu", &package, 8).unwrap();
        let mapping = ipdu
            .map_signal(
                &signal,
                0,
                ByteOrder::MostSignificantByteLast,
                None,
                TransferProperty::Triggered,
            )
            .unwrap();
        assert_eq!(signal.mappings().count(), 1);
        assert_eq!(signal.mappings().next(), Some(mapping.clone()));
        assert_eq!(mapping.signal().unwrap(), signal);
    }

    #[test]
    fn test_signal_data_transformations() {
        let model = AutosarModel::new();
        let _file = model.create_file("test.arxml", AutosarVersion::LATEST).unwrap();
        let package = ArPackage::get_or_create(&model, "/test").unwrap();
        let sw_base_type =
            SwBaseType::new("sw_base_type", &package, 8, BaseTypeEncoding::None, None, None, None).unwrap();
        let signal = ISignal::new(
            "signal",
            &package,
            8,
            &SystemSignal::new("sys_signal", &package).unwrap(),
            Some(&sw_base_type),
        )
        .unwrap();

        let dts = DataTransformationSet::new("data_transformation_set", &package).unwrap();
        let transformer = dts
            .create_transformation_technology(
                "someip_xf",
                &TransformationTechnologyConfig::SomeIp(SomeIpTransformationTechnologyConfig {
                    alignment: 8,
                    byte_order: ByteOrder::MostSignificantByteFirst,
                    interface_version: 1,
                }),
            )
            .unwrap();
        let data_transformation = dts
            .create_data_transformation("someip_trans", &[&transformer], false)
            .unwrap();

        signal.add_data_transformation(&data_transformation).unwrap();

        assert_eq!(signal.data_transformations().count(), 1);
        assert_eq!(signal.data_transformations().next(), Some(data_transformation));

        let someip_props = SomeIpTransformationISignalPropsConfig {
            legacy_strings: Some(true),
            interface_version: Some(1),
            dynamic_length: Some(true),
            message_type: Some(SomeIpMessageType::Request),
            size_of_array_length: Some(8),
            size_of_string_length: Some(16),
            size_of_struct_length: Some(32),
            size_of_union_length: Some(64),
        };

        signal
            .add_transformation_isignal_props(
                &transformer,
                &TransformationISignalPropsConfig::SomeIp(someip_props.clone()),
            )
            .unwrap();
        assert_eq!(signal.transformation_isignal_props().count(), 1);
    }

    #[test]
    fn test_signal_group_data_transformations() {
        let model = AutosarModel::new();
        let _file = model.create_file("test.arxml", AutosarVersion::LATEST).unwrap();
        let package = ArPackage::get_or_create(&model, "/test").unwrap();

        let signal_group = ISignalGroup::new(
            "signal_group",
            &package,
            &SystemSignalGroup::new("sys_signal_group", &package).unwrap(),
        )
        .unwrap();

        let dts = DataTransformationSet::new("data_transformation_set", &package).unwrap();
        let transformer = dts
            .create_transformation_technology(
                "someip_xf",
                &TransformationTechnologyConfig::SomeIp(SomeIpTransformationTechnologyConfig {
                    alignment: 8,
                    byte_order: ByteOrder::MostSignificantByteFirst,
                    interface_version: 1,
                }),
            )
            .unwrap();
        let data_transformation = dts
            .create_data_transformation("someip_trans", &[&transformer], false)
            .unwrap();

        signal_group.add_data_transformation(&data_transformation).unwrap();
        assert_eq!(signal_group.data_transformations().count(), 1);
        assert_eq!(signal_group.data_transformations().next(), Some(data_transformation));

        let someipxf_props = TransformationISignalPropsConfig::SomeIp(SomeIpTransformationISignalPropsConfig {
            legacy_strings: None,
            interface_version: None,
            dynamic_length: None,
            message_type: None,
            size_of_array_length: None,
            size_of_string_length: None,
            size_of_struct_length: None,
            size_of_union_length: None,
        });
        signal_group
            .add_transformation_isignal_props(&transformer, &someipxf_props)
            .unwrap();
        assert_eq!(signal_group.transformation_isignal_props().count(), 1);
    }

    #[test]
    fn test_signal_group() {
        let model = AutosarModel::new();
        let _file = model.create_file("test.arxml", AutosarVersion::LATEST).unwrap();
        let package = ArPackage::get_or_create(&model, "/test").unwrap();
        let sys_signal_group = SystemSignalGroup::new("sys_signal_group", &package).unwrap();
        let signal_group = ISignalGroup::new("signal_group", &package, &sys_signal_group).unwrap();
        assert_eq!(signal_group.system_signal_group(), Some(sys_signal_group.clone()));

        let sys_signal = SystemSignal::new("sys_signal", &package).unwrap();
        let signal = ISignal::new("signal", &package, 8, &sys_signal, None).unwrap();
        assert_eq!(signal.system_signal(), Some(sys_signal.clone()));

        sys_signal_group.add_signal(&sys_signal).unwrap();
        assert_eq!(sys_signal.signal_group(), Some(sys_signal_group.clone()));

        signal_group.add_signal(&signal).unwrap();
        assert_eq!(signal_group.signals().count(), 1);
    }

    #[test]
    fn test_signal_triggering() {
        let model = AutosarModel::new();
        let _file = model.create_file("test.arxml", AutosarVersion::LATEST).unwrap();
        let package = ArPackage::get_or_create(&model, "/test").unwrap();
        let system = package.create_system("system", SystemCategory::EcuExtract).unwrap();

        let sw_base_type =
            SwBaseType::new("sw_base_type", &package, 8, BaseTypeEncoding::None, None, None, None).unwrap();

        let sys_signal = package.create_system_signal("sys_signal").unwrap();
        let signal = system
            .create_isignal("signal", &package, 8, &sys_signal, Some(&sw_base_type))
            .unwrap();

        // signal triggering
        let cluster = system
            .create_can_cluster("cluster", &package, &CanClusterSettings::default())
            .unwrap();
        let channel = cluster.create_physical_channel("channel").unwrap();
        let st = ISignalTriggering::new(&signal, &channel.clone().into()).unwrap();

        assert_eq!(st.physical_channel().unwrap(), channel.clone().into());

        let ecuinstance = system.create_ecu_instance("ecu", &package).unwrap();
        let controller = ecuinstance.create_can_communication_controller("controller").unwrap();
        controller.connect_physical_channel("connection", &channel).unwrap();

        assert_eq!(st.signal_ports().count(), 0);
        let signal_port = st.connect_to_ecu(&ecuinstance, CommunicationDirection::In).unwrap();
        assert_eq!(st.signal_ports().count(), 1);
        assert_eq!(signal_port.ecu(), Some(ecuinstance));
        assert_eq!(signal_port.communication_direction(), Some(CommunicationDirection::In));
    }
}