[−][src]Crate auto_enums
A library for to allow multiple return types by automatically generated enum.
This library provides the following attribute macros:
-
#[auto_enum]
Parses syntax, creates the enum, inserts variants, and passes specified traits to
#[enum_derive]
. -
#[enum_derive]
Implements specified traits to the enum.
#[auto_enum]
#[auto_enum]
's basic feature is to wrap the value returned by the obvious
branches (match
, if
, return
, etc..) by an enum that implemented the
specified traits.
use auto_enums::auto_enum; #[auto_enum(Iterator)] fn foo(x: i32) -> impl Iterator<Item = i32> { match x { 0 => 1..10, _ => vec![5, 10].into_iter(), } }
#[auto_enum]
generates code in two stages.
First, #[auto_enum]
will do the following.
- parses syntax
- creates the enum
- inserts variants
Code like this will be generated:
fn foo(x: i32) -> impl Iterator<Item = i32> { #[::auto_enums::enum_derive(Iterator)] enum __Enum1<__T1, __T2> { __T1(__T1), __T2(__T2), } match x { 0 => __Enum1::__T1(1..10), _ => __Enum1::__T2(vec![5, 10].into_iter()), } }
Next, #[enum_derive]
implements the specified traits.
Code like this will be generated:
fn foo(x: i32) -> impl Iterator<Item = i32> { enum __Enum1<__T1, __T2> { __T1(__T1), __T2(__T2), } impl<__T1, __T2> ::core::iter::Iterator for __Enum1<__T1, __T2> where __T1: ::core::iter::Iterator, __T2: ::core::iter::Iterator<Item = <__T1 as ::core::iter::Iterator>::Item>, { type Item = <__T1 as ::core::iter::Iterator>::Item; #[inline] fn next(&mut self) -> ::core::option::Option<Self::Item> { match self { __Enum1::__T1(x) => x.next(), __Enum1::__T2(x) => x.next(), } } #[inline] fn size_hint(&self) -> (usize, ::core::option::Option<usize>) { match self { __Enum1::__T1(x) => x.size_hint(), __Enum1::__T2(x) => x.size_hint(), } } } match x { 0 => __Enum1::__T1(1..10), _ => __Enum1::__T2(vec![5, 10].into_iter()), } }
#[auto_enum]
can also parse nested arms/branches by using the #[nested]
attribute.
#[auto_enum(Iterator)] fn foo(x: i32) -> impl Iterator<Item = i32> { match x { 0 => 1..10, #[nested] _ => match x { 1 => vec![5, 10].into_iter(), _ => 0..=x, }, } }
#[nested]
can be used basically in the same place as #[auto_enum]
,
except that #[nested]
cannot be used in functions.
Positions where #[auto_enum]
can be used.
#[auto_enum]
can be used in the following three places. However, since
stmt_expr_attributes and proc_macro_hygiene are not stabilized, you need
to use empty #[auto_enum]
for functions except nightly.
-
functions
#[auto_enum(Iterator)] fn func(x: i32) -> impl Iterator<Item=i32> { if x == 0 { Some(0).into_iter() } else { 0..x } }
-
expressions
#[auto_enum] // Nightly does not need an empty attribute to the function. fn expr(x: i32) -> impl Iterator<Item=i32> { #[auto_enum(Iterator)] match x { 0 => Some(0).into_iter(), _ => 0..x, } }
-
let binding
#[auto_enum] // Nightly does not need an empty attribute to the function. fn let_binding(x: i32) -> impl Iterator<Item=i32> { #[auto_enum(Iterator)] let iter = match x { 0 => Some(0).into_iter(), _ => 0..x, }; iter }
Supported syntax
-
if
andmatch
Wrap each branch with a variant.
// if #[auto_enum(Iterator)] fn expr_if(x: i32) -> impl Iterator<Item=i32> { if x == 0 { Some(0).into_iter() } else { 0..x } } // match #[auto_enum] // Nightly does not need an empty attribute to the function. fn expr_match(x: i32) -> impl Iterator<Item=i32> { #[auto_enum(Iterator)] let iter = match x { 0 => Some(0).into_iter(), _ => 0..x, }; iter }
-
loop
Wrap each
break
with a variant. Nested loops and labeledbreak
are also supported.#[auto_enum(Iterator)] fn expr_loop(mut x: i32) -> impl Iterator<Item = i32> { loop { if x < 0 { break x..0; } else if x % 5 == 0 { break 0..=x; } x -= 1; } }
-
return
(in functions)#[auto_enum]
can parse thereturn
in the scope.This analysis is valid only when the return type is
impl Trait
.// return (in functions) #[auto_enum(Iterator)] fn func(x: i32) -> impl Iterator<Item=i32> { if x == 0 { return Some(0).into_iter(); } if x > 0 { 0..x } else { x..=0 } }
-
return
(in closures)#[auto_enum]
can parse thereturn
in the scope.This analysis is valid only when the following two conditions are satisfied.
#[auto_enum]
must be used directly for that closure (or the let binding of the closure).?
operator not used in the scope.
// return (in closures) #[auto_enum] // Nightly does not need an empty attribute to the function. fn closure() -> impl Iterator<Item=i32> { #[auto_enum(Iterator)] let f = |x| { if x == 0 { return Some(0).into_iter(); } if x > 0 { 0..x } else { x..=0 } }; f(1) }
-
?
operator (in functions)#[auto_enum]
can parse the?
operator in the scope.This analysis is valid only when the return type is
Result<T, impl Trait>
.use std::fmt::{Debug, Display}; // `?` operator (in functions) #[auto_enum(Debug, Display)] fn func(x: i32) -> Result<i32, impl Debug + Display> { if x == 0 { Err("`x` is zero")?; } // The last branch of the function is not parsed. if x < 0 { Err(x)? } else { Ok(x + 1) } }
?
operator is expanded as follows:match expr { Ok(val) => val, Err(err) => return Err(Enum::Veriant(err)), }
-
?
operator (in closures)#[auto_enum]
can parse the?
operator in the scope.However,
#[auto_enum]
must be used directly for that closure (or the let binding of the closure).use std::fmt::{Debug, Display}; // `?` operator (in closures) #[auto_enum] // Nightly does not need an empty attribute to the function. fn closure() -> Result<i32, impl Debug + Display> { #[auto_enum(Debug, Display)] let f = |x| { if x == 0 { Err("`x` is zero")? } // The last branch of the function is not interpreted as a branch. if x < 0 { Err(x)? } else { Ok(x + 1) } }; f(1) }
-
Block, unsafe block, method call, parentheses, and type ascription
The following expressions are recursively searched until an
if
,match
,loop
or unsupported expression is found.- blocks
- unsafe blocks
- method calls
- parentheses
- type ascriptions
// block #[auto_enum] // Nightly does not need an empty attribute to the function. fn expr_block(x: i32) -> impl Iterator<Item=i32> { #[auto_enum(Iterator)] { if x == 0 { Some(0).into_iter() } else { 0..x } } } // method call #[auto_enum] // Nightly does not need an empty attribute to the function. fn expr_method(x: i32) -> impl Iterator<Item=i32> { #[auto_enum(Iterator)] match x { 0 => Some(0).into_iter(), _ => 0..x, }.map(|y| y + 1) } // parentheses #[auto_enum(Iterator)] fn expr_parentheses(x: i32) -> impl Iterator<Item=i32> { (if x == 0 { Some(0).into_iter() } else { 0..x }) }
Expression that no value will be returned
If the last expression of a branch is one of the following, it is interpreted that no value will be returned (variant assignment is skipped).
panic!(..)
unreachable!(..)
return
break
continue
None?
Err(..)?
- Expression level marker (
marker!
macro). - An item definition.
Also, if the branch contains #[nested]
, it is interpreted as returning
an anonymous enum generated by #[auto_enum]
, not a value.
#[auto_enum(Iterator)] fn foo(x: i32) -> impl Iterator<Item = i32> { match x { 0 => 1..10, 1 => panic!(), // variant assignment is skipped _ => vec![5, 10].into_iter(), } }
You can also skip that branch explicitly by #[never]
attribute.
#[auto_enum(Iterator)] fn foo(x: i32) -> impl Iterator<Item = i32> { match x { 0 => 1..10, #[never] 1 => loop { panic!() }, _ => vec![5, 10].into_iter(), } }
Expression level marker (marker!
macro)
#[auto_enum]
replaces marker!
macros with variants.
If values of two or more are specified by marker!
macros, #[auto_enum]
can be used for unsupported expressions and statements.
#[auto_enum(Iterator)] fn foo(x: i32) -> impl Iterator<Item = i32> { if x < 0 { return x..=0; } marker!(1..10) }
The default name of the macro is "marker"
, but you can change it by
marker
option.
#[auto_enum(marker = bar, Iterator)] fn foo(x: i32) -> impl Iterator<Item = i32> { if x < 0 { return x..=0; } bar!(1..10) }
Rust Nightly
When using #[auto_enum]
for expressions and statements, #[auto_enum]
for
function is unnecessary.
// Add this to your crate root: #![feature(proc_macro_hygiene, stmt_expr_attributes)]
fn foo(x: i32) -> i32 { #[auto_enum(Iterator)] let iter = match x { 0 => 1..10, _ => vec![5, 10].into_iter(), }; iter.fold(0, |sum, x| sum + x) }
You can also return closures.
// Add this to your crate root: #![feature(fn_traits, unboxed_closures)]
#[auto_enum(Fn)] fn foo(x: bool) -> impl Fn(i32) -> i32 { if x { |y| y + 1 } else { |z| z - 1 } }
#[enum_derive]
#[enum_derive]
implements the supported traits and passes unsupported
traits to #[derive]
.
If you want to use traits that are not supported by #[enum_derive]
, you
can use another crate that provides proc_macro_derive
, or you can define
proc_macro_derive
yourself(derive_utils probably can help it).
Basic usage of #[enum_derive]
use auto_enums::enum_derive; // `#[enum_derive]` implements `Iterator`, and `#[derive]` implements `Clone`. #[enum_derive(Iterator, Clone)] enum Foo<A, B> { A(A), B(B), }
#[enum_derive]
adds the dependency of the specified trait if it is not
specified.
use auto_enums::enum_derive; // `#[enum_derive]` implements `Iterator` and `ExactSizeIterator`. #[enum_derive(ExactSizeIterator)] enum Foo<A, B> { A(A), B(B), }
Supported traits
Some traits support is disabled by default. Note that some traits have aliases.
When using features that depend on unstable APIs, the unstable
feature must be explicitly enabled
[std|core] libraries
[std|core]::iter
Iterator
- generated codeDoubleEndedIterator
- generated codeExactSizeIterator
- generated codeFusedIterator
- generated codeExtend
- generated codeTrustedLen
- generated code (requires"trusted_len"
and"unstable"
crate features)
[std|core]::future
std::io
(requires "std"
crate feature)
Read
(alias:io::Read
) - generated codeBufRead
(alias:io::BufRead
) - generated codeWrite
(alias:io::Write
) - generated codeSeek
(alias:io::Seek
) - generated code
[std|core]::ops
Deref
(requires"ops"
crate feature)DerefMut
(requires"ops"
crate feature)Index
(requires"ops"
crate feature)IndexMut
(requires"ops"
crate feature)RangeBounds
(requires"ops"
crate feature)Fn
(requires"fn_traits"
and"unstable"
crate features)FnMut
(requires"fn_traits"
and"unstable"
crate features)FnOnce
(requires"fn_traits"
and"unstable"
crate features)Generator
(requires"generator_trait"
and"unstable"
crate features)
[std|core]::convert
[std|core]::fmt
Debug
(alias:fmt::Debug
) - generated codeDisplay
(alias:fmt::Display
)fmt::Binary
(requires"fmt"
crate feature)fmt::LowerExp
(requires"fmt"
crate feature)fmt::LowerHex
(requires"fmt"
crate feature)fmt::Octal
(requires"fmt"
crate feature)fmt::Pointer
(requires"fmt"
crate feature)fmt::UpperExp
(requires"fmt"
crate feature)fmt::UpperHex
(requires"fmt"
crate feature)fmt::Write
std::error
(requires "std"
crate feature)
External libraries
You can add support for external library by activating the each crate feature.
futures(v0.3)
(requires "futures"
and "unstable"
crate feature)
futures::Stream
- generated codefutures::Sink
- generated codefutures::AsyncRead
- generated codefutures::AsyncWrite
- generated codefutures::AsyncSeek
- generated codefutures::AsyncBufRead
- generated code
futures(v0.1)
(requires "futures01"
crate feature)
rayon
(requires "rayon"
crate feature)
rayon::ParallelIterator
- generated coderayon::IndexedParallelIterator
- generated coderayon::ParallelExtend
- generated code
serde
(requires "serde"
crate feature)
Static methods
These don't derive traits, but derive static methods instead.
-
Transpose
(requires"transpose_methods"
crate feature) - this derives the following conversion methods.-
transpose
- convert fromenum<Option<T1>,..>
toOption<enum<T1,..>>
-
transpose
- convert fromenum<Result<T1, E1>,..>
toResult<enum<T1,..>, enum<E1,..>>
-
transpose_ok
- convert fromenum<Result<T1, E>,..>
toOption<enum<T1,..>, E>
Examples:
use std::{fs, io, path::Path}; #[auto_enum(Transpose, Write)] fn output_stream(file: Option<&Path>) -> io::Result<impl io::Write> { match file { Some(f) => fs::File::create(f), None => Ok(io::stdout()), }.transpose_ok() }
-
transpose_err
- convert fromenum<Result<T, E1>,..>
toResult<T, enum<E1,..>>
-
Crate Features
-
std
- Enabled by default.
- Enable to use
std
library's traits.
-
ops
- Disabled by default.
- Enable to use
[std|core]::ops
'sDeref
,DerefMut
,Index
,IndexMut
, andRangeBounds
traits.
-
convert
- Disabled by default.
- Enable to use
[std|core]::convert
'sAsRef
andAsMut
traits.
-
fmt
- Disabled by default.
- Enable to use
[std|core]::fmt
's traits other thanDebug
,Display
andWrite
.
-
type_analysis
-
Disabled by default.
-
Analyze return type of function and
let
binding.Note that this feature is still experimental.
Examples:
#[auto_enum] // there is no need to specify std library's traits fn foo(x: i32) -> impl Iterator<Item = i32> { match x { 0 => 1..10, _ => vec![5, 10].into_iter(), } }
Please be careful if you return another traits with the same name.
-
-
transpose_methods
- Disabled by default.
- Enable to use
transpose*
methods.
Using external libraries (disabled by default)
-
futures
- futures(v0.3) (requires"unstable"
crate feature) -
futures01
- futures(v0.1) -
rayon
- rayon -
serde
- serde
Enable unstable features of [std|core] libraries (disabled by default, requires "unstable"
crate feature)
For these features, you need to enable the unstable feature gate of the same name.
Note that support for these features are unstable and may cause incompatible changes between patch versions.
-
generator_trait
- Enable to use[std|core]::ops::Generator
trait. -
fn_traits
- Enable to use[std|core]::ops
'sFn
,FnMut
, andFnOnce
traits. -
trusted_len
- Enable to use[std|core]::iter::TrustedLen
trait.
Known limitations
-
There needs to explicitly specify the trait to be implemented (
type_analysis
crate feature reduces this limitation). -
There needs to be marker macros for unsupported expressions.
Attribute Macros
auto_enum | An attribute macro for to allow multiple return types by automatically generated enum. |
enum_derive | An attribute macro like a wrapper of |