1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
use std::cell::RefCell;
use std::rc::Rc;
use std::fmt;
use ::rand::prelude::StdRng;
use std::ops::{Add, Div, Neg, Sub, Mul};
use std::convert::TryFrom;

use tensor_rs::tensor::{Tensor};
use crate::op::{Op};
use crate::err::AutoDiffError;
use crate::optim::Optimizer;
use crate::var_inner::VarInner;
use crate::compute_graph::{Net};



macro_rules! var_1_to_1 {
    ($(#[$attr:meta])*
     $a:ident) => {
        $(#[$attr])*
        pub fn $a(&self) -> Result<Var, AutoDiffError> {
            Ok(Var {
                var: Rc::new(RefCell::new(self.var.borrow().$a()?))})
        }
    }
}

macro_rules! var_2_to_1 {
    ($(#[$attr:meta])*
     $a:ident) => {
        $(#[$attr])*
        pub fn $a(&self, other: &Var) -> Result<Var, AutoDiffError> {
            Ok(Var {
                var: Rc::new(RefCell::new(self.var.borrow().$a(&other.var.clone())?))})
        }
    }
}

macro_rules! var_more_to_1_with_para {
    ($(#[$attr:meta])*
     $a:ident, $( $arg_name:ident : $ArgTy:ty ),* $(,)?) => {
        $(#[$attr])*
        pub fn $a(&self, other: &[Var], $( $arg_name : $ArgTy ),*) -> Result<Var, AutoDiffError> {
            let mut other_input = Vec::new();
            for i in other {
                other_input.push(i.var.clone());
            }
            Ok(Var {
                var: Rc::new(RefCell::new(self.var.borrow().$a(&other_input, $( $arg_name ),*)?))})
        }
    }
}

macro_rules! var_1_to_1_with_para {
    ($(#[$attr:meta])*
     $a:ident, $( $arg_name:ident : $ArgTy:ty ),* $(,)?) => {
        $(#[$attr])*
        pub fn $a(&self, $( $arg_name : $ArgTy ),*) -> Result<Var, AutoDiffError> {
            Ok(Var {
                var: Rc::new(RefCell::new(self.var.borrow().$a($( $arg_name ),*)?))})
        }
    }
}

macro_rules! var_2_to_1_with_para {
    ($(#[$attr:meta])*
     $a:ident, $( $arg_name:ident : $ArgTy:ty ),* $(,)?) => {
        $(#[$attr])*
        pub fn $a(&self, other: &Var, $( $arg_name : $ArgTy ),*) -> Result<Var, AutoDiffError> {
            Ok(Var {
                var: Rc::new(RefCell::new(self.var.borrow().$a(&other.var.clone(), $( $arg_name ),*)?))})
        }
    }
}

macro_rules! delegate_new_op {
    ($(#[$attr:meta])*
     $a:ident, $( $arg_name:ident : $ArgTy:ty ),* $(,)?) => {
        $(#[$attr])*
        pub fn $a($( $arg_name : $ArgTy ),*) -> Var {
            Var {
                var: Rc::new(RefCell::new(VarInner::$a($( $arg_name ),*)))
            }
        }
    }
}

/// [Var] can be thought as the value it holds plus a link
/// to the computation graph.
/// Majority of operators are methods on [Var].
pub struct Var {
    var: Rc<RefCell<VarInner>>
}
impl Var {
    #[cfg(feature = "use-f64")]
    pub fn new(input: &[f64], dim: &[usize]) -> Var {
        Var::new_f64(input, dim)
    }
    #[cfg(feature = "use-f32")]
    pub fn new(input: &[f32], dim: &[usize]) -> Var {
        Var::new_f32(input, dim)
    }
    pub fn new_f64(input: &[f64], dim: &[usize]) -> Var {
        Var {
            var: Rc::new(RefCell::new(VarInner::new_f64(input, dim)))
        }
    }
    pub fn new_f32(input: &[f32], dim: &[usize]) -> Var {
        Var {
            var: Rc::new(RefCell::new(VarInner::new_f32(input, dim)))
        }
    }

    /// Where it needs a assign operator,
    /// we should use this ref_copy.
    /// If a hard copy is necessary, then call clone().
    pub fn ref_copy(self: &Var) -> Var {
        Var {
            var: self.var.clone(),
        }
    }

    pub fn size(&self) -> Vec<usize> {
        self.var.borrow().size()
    }
    pub fn numel(&self) -> usize {
        self.var.borrow().numel()
    }
    pub fn get_f32(&self, o: &[usize]) -> Result<f32, AutoDiffError> {
        self.var.borrow().get_f32(o)
    }
    pub fn set_f32(&self, o: &[usize], v: f32) -> Result<(), AutoDiffError> {
        self.var.borrow_mut().set_f32(o, v)
    }
    pub fn get_f64(&self, o: &[usize]) -> Result<f64, AutoDiffError> {
        self.var.borrow().get_f64(o)
    }
    pub fn set_f64(&self, o: &[usize], v: f64) -> Result<(), AutoDiffError> {
        self.var.borrow_mut().set_f64(o, v)
    }

    pub fn set(&self, o: &Var) {
        self.var.borrow_mut().set(&o.var.borrow());
    }

    pub fn fill(size: &[usize], fill_value: &Var) -> Var {
        Var {
            var: Rc::new(RefCell::new(
                VarInner::fill(size, fill_value.var.clone())))
        }
    }
    delegate_new_op!(fill_f32, size: &[usize], fill_value: f32);
    delegate_new_op!(fill_f64, size: &[usize], fill_value: f64);
    delegate_new_op!(zeros, dim: &[usize]);
    delegate_new_op!(ones, dim: &[usize]);
    delegate_new_op!(twos, dim: &[usize]);
    //delegate_new_inner_op!(arange, end: usize);
    //delegate_new_inner_op!(range, start: f32, end: f32, step: Option<f32>);
    //delegate_new_inner_op!(linspace, start: f32, end: f32, steps: usize);
    //delegate_new_inner_op!(logspace, start: f32, end: f32, steps: usize, base: f32);
    delegate_new_op!(
        /// Identity matrix
        eye, n: usize, m: usize);
    delegate_new_op!(empty, dim: &[usize]);
    
    /// Fill row by row.
    pub fn from_record_f32(&self, row: usize, record: &[f32]) {
        self.var.borrow().from_record_f32(row, record)
    }
    pub fn from_record_f64(&self, row: usize, record: &[f64]) {
        self.var.borrow().from_record_f64(row, record)
    }
    
    // rand
    delegate_new_op!(rand_usize,
                     rng: &mut StdRng,
                     dim: &[usize],
                     left: usize, right: usize);
    
    delegate_new_op!(normal_f64,
                     rng: &mut StdRng,
                     dim: &[usize],
                     mean: f64, std: f64);
    delegate_new_op!(normal_f32,
                     rng: &mut StdRng,
                     dim: &[usize],
                     mean: f32, std: f32);
    #[cfg(feature = "use-f32")]
    pub fn normal(rng: &mut StdRng,
                  dim: &[usize],
                  mean: f32, std: f32) -> Var {
        Self::normal_f32(rng, dim, mean, std)
    }
    #[cfg(feature = "use-f64")]
    pub fn normal(rng: &mut StdRng,
                  dim: &[usize],
                  mean: f64, std: f64) -> Var {
        Self::normal_f64(rng, dim, mean, std)
    }
    
    delegate_new_op!(uniform_f64,
                     rng: &mut StdRng,
                     dim: &[usize],
                     from: f64, to: f64);
    delegate_new_op!(uniform_f32,
                     rng: &mut StdRng,
                     dim: &[usize],
                     from: f32, to: f32);
    #[cfg(feature = "use-f32")]
    pub fn uniform(rng: &mut StdRng,
                   dim: &[usize],
                   from: f32, to: f32) -> Var {
        Self::uniform_f32(rng, dim, from, to)
    }
    #[cfg(feature = "use-f64")]
    pub fn uniform(rng: &mut StdRng,
                   dim: &[usize],
                   from: f64, to: f64) -> Var {
        Self::uniform_f64(rng, dim, from, to)
    }

    pub fn _add(&self, other: &Var) -> Var {
        Var {
            var: Rc::new(RefCell::new(self.var.borrow().add(&other.var).expect("never fail.")))
        }
    }
    pub fn _sub(&self, other: &Var) -> Var {
        Var {
            var: Rc::new(RefCell::new(self.var.borrow().sub(&other.var).expect("never fail.")))
        }
    }
    pub fn _mul(&self, other: &Var) -> Var {
        Var {
            var: Rc::new(RefCell::new(self.var.borrow().mul(&other.var).expect("never fail.")))
        }
    }
    pub fn _div(&self, other: &Var) -> Var {
        Var {
            var: Rc::new(RefCell::new(self.var.borrow().div(&other.var).expect("never fail.")))
        }
    }
    
    var_2_to_1!(
        /// Matrix/inner/dot product
        /// 
        /// # use auto_diff::{Var, var_f64, AutoDiffError};
        /// # extern crate openblas_src;
        /// # fn test_matmul() -> Result<(), AutoDiffError> {
        /// let v1 = var_f64!([[1., 2., 3.],
        ///                    [4., 5., 6.]]);
        /// let v2 = var_f64!([[11., 12., 13.],
        ///                    [14., 15., 16.],
        ///                    [17., 18., 19.]]);
        /// let v3 = v1.matmul(&v2)?;
        /// let em = var_f64!([[90.0, 96.0, 102.0],
        ///                    [216.0, 231.0, 246.0]]);
        /// assert_eq!(v3, em);
        /// #   Ok(())
        /// # }
        /// # test_matmul();
        /// 
        matmul);
    var_2_to_1!(
        /// Outer product
        /// ```
        /// # use auto_diff::{Var, var_f64, AutoDiffError};
        /// # fn test_outer() -> Result<(), AutoDiffError> {
        /// let v1 = Var::new_f64(&[1., 2., 3.], &[3]);
        /// let v2 = Var::new_f64(&[4., 5., 6.], &[3]);
        /// let v3 = v1.outer(&v2)?;
        /// let em = var_f64!([[4.,   5.,  6.],
        ///                    [8.,  10., 12.],
        ///                    [12., 15., 18.]]);
        /// assert_eq!(v3, em);
        /// #   Ok(())
        /// # }
        /// # test_outer();
        /// ```
        outer);

    // nonlinear
    pub fn elu(&self, alpha: Var) -> Result<Var, AutoDiffError> {
        Ok(Var {
            var: Rc::new(RefCell::new(
                self.var.borrow().elu(
                    VarInner::new_tensor(alpha.val()))?))
        })
    }
    var_1_to_1!(relu);
    var_1_to_1!(sigmoid);

    // loss
    var_2_to_1!(mse_loss);
    var_2_to_1!(bce_with_logits_loss);
    var_2_to_1!(cross_entropy_loss);

    //elementwise op
    var_1_to_1!(abs);
    var_1_to_1!(acos);
    var_1_to_1!(asin);
    var_1_to_1!(atan);
    var_1_to_1!(ceil);
    var_1_to_1!(cos);
    var_1_to_1!(cosh);
    var_1_to_1!(exp);
    var_1_to_1!(expm1);
    var_1_to_1!(floor);
    var_1_to_1!(frac);
    var_1_to_1!(log);
    var_1_to_1!(log10);
    var_1_to_1!(log1p);
    var_1_to_1!(log1pexp);
    var_1_to_1!(log2);
    var_1_to_1!(neg);
    pub fn _neg(&self) -> Var {
        Var {
            var: Rc::new(RefCell::new(self.var.borrow().neg().expect("never fail.")))
        }
    }
    var_1_to_1!(reciprocal);
    var_1_to_1!(round);
    var_1_to_1!(rsqrt);
    var_1_to_1!(sign);
    var_1_to_1!(sin);
    var_1_to_1!(sinh);
    var_1_to_1!(sqrt);
    var_1_to_1!(tan);
    var_1_to_1!(tanh);
    var_1_to_1!(trunc);

    // comparison
    var_2_to_1!(max_pair);
    var_2_to_1!(min_pair);
    var_1_to_1_with_para!(arg_sort, 
                          dim: usize, descending: bool);
    var_2_to_1!(eq_elem);
    var_2_to_1!(equal);
    var_2_to_1!(ge);
    var_2_to_1!(gt);
    var_2_to_1!(le);
    var_2_to_1!(lt);
    var_2_to_1!(ne);

    // index and slicing
    var_more_to_1_with_para!(
        /// Concatenates the given sequence of seq tensors
        /// in the given dimension.
        /// The input tensor should all have the same size except
        /// on the given dimension.
        /// The output tensor will have all the same size as the input
        /// except the given dimension, which will be the sum of
        /// the inputs on the given dimension.
        /// Apply cat on [tensor(5, 3, 2), tensor(5, 7, 2), ]
        /// will get a tensor(5, 10, 2).
        ///
        /// 
        /// # use auto_diff::{Var, var_f64, AutoDiffError};
        /// # extern crate openblas_src;
        /// # fn test_cat() -> Result<(), AutoDiffError> {
        /// let m1 = Var::empty(&[3, 1]);
        /// let m2 = Var::empty(&[3, 1]);
        /// let m3 = Var::empty(&[3, 1]);
        /// let m4 = m1.cat(&[m2, m3], 1)?;
        /// assert_eq!(m4.size(), [3, 3]);
        /// #   Ok(())
        /// # }
        /// # test_cat();
        /// 
        cat, dim: usize);
    pub fn chunk(&self, chunks: usize, dim: usize)
                 -> Result<Vec<Var>, AutoDiffError> {
        let mut result = self.var.borrow().chunk(chunks, dim)?;
        let mut ret = Vec::new();
        for i in result.drain(..) {
            ret.push(Var {
                var: Rc::new(RefCell::new(i)),
            });
        }
        Ok(ret)
    }
    pub fn conditional_select(&self, x: &Var, y: &Var)
                              -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().conditional_select(x.var.clone(),
                                                          y.var.clone())?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn gather(&self, dim: usize, index: Var)
                  -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().gather(dim, index.var)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn index_select(&self, dim: usize,
                        index: Var)
                        -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().index_select(
            dim, index.var)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn index_exclude(&self, dim: usize,
                        index: Var)
                        -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().index_exclude(
            dim, index.var)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn permute(&self, dim: &[usize])
                   -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().permute(dim)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn repeat(&self, dim: &[usize])
                  -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().repeat(dim)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn reshape(&self, new_shape: &[usize])
                  -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().reshape(new_shape)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn split(&self, sections: &[usize], dim: usize)
                  -> Result<Vec<Var>, AutoDiffError> {
        let mut result = self.var.borrow().split(sections, dim)?;
        let mut ret = Vec::new();
        for i in result.drain(..) {
            ret.push(Var {
                var: Rc::new(RefCell::new(i)),
            });
        }
        Ok(ret)
    }
    pub fn squeeze(&self, dim: Option<usize>)
                   -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().squeeze(dim)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    var_1_to_1!(t);
    pub fn take(&self, index: &[usize])
                -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().take(index)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    pub fn unsqueeze(&self, dim: usize)
                   -> Result<Var, AutoDiffError> {
        let result = self.var.borrow().unsqueeze(dim)?;
        Ok(Var {
            var: Rc::new(RefCell::new(result)),
        })
    }
    var_more_to_1_with_para!(
        /// Stack tensor with the same size along a new dimension
        /// specified by dim.
        /// The difference from cat is that cat don't create new dimension.
        ///
        /// ```
        /// # use auto_diff::{Var, var_f64, AutoDiffError};
        /// # fn test_stack() -> Result<(), AutoDiffError> {
        /// let m1 = var_f64!([[1., 2., ],
        ///                [3., 4., ]]);
        /// let m2 = var_f64!([[5., 6., ],
        ///                [7., 8., ]]);
        /// let m3 = m1.stack(&[m2], 1)?;
        /// #   let em = Var::new_f64(&[1.0, 2.0, 5.0, 6.0, 3.0, 4.0, 7.0, 8.0], &[2, 2, 2]);
        /// #   assert_eq!(m3, em);
        /// #   Ok(())
        /// # }
        /// # test_stack();
        /// ```
        stack, dim: usize);

    // linalg
    var_1_to_1!(det);
    var_1_to_1!(inv);
    var_1_to_1!(normalize_unit);
    var_1_to_1!(tr);

    // reduction
    var_1_to_1_with_para!(argmax, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(argmin, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(logsumexp, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(mean, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(prod, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(std, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(sum, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(var, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(max, dim: Option<&[usize]>, keepdim: bool);
    var_1_to_1_with_para!(min, dim: Option<&[usize]>, keepdim: bool);

    // images
    var_1_to_1_with_para!(
        /// Get a portion of the tensor and return it.
        ///
        /// ```
        /// # use auto_diff::{Var, var_f64, AutoDiffError};
        /// # fn test_get_patch() -> Result<(), AutoDiffError> {
        /// let m1 = var_f64!([[1., 2., 3.],
        ///                    [4., 5., 6.],
        ///                    [7., 8., 9.]]);
        /// let m2 = var_f64!([[4., 5.],
        ///                    [7., 8.]]);
        /// assert_eq!(m1.get_patch(&[(1, 3), (0, 2)], None)?, m2);
        /// #   Ok(())
        /// # }
        /// # test_get_patch();
        /// ```
        get_patch, range: &[(usize, usize)], step: Option<&[usize]>);
    var_2_to_1_with_para!(
        /// Set a portion of the tensor.
        ///
        /// ```
        /// # use auto_diff::{Var, var_f64, AutoDiffError};
        /// # fn test_set_patch() -> Result<(), AutoDiffError> {
        /// let m1 = var_f64!([[1., 2., 3.],
        ///                    [4., 5., 6.],
        ///                    [7., 8., 9.]]);
        /// let m2 = var_f64!([[10., 11.],
        ///                    [12., 13.]]);
        /// let m3 = var_f64!([[1.,   2., 3.],
        ///                    [10., 11., 6.],
        ///                    [12., 13., 9.]]);
        /// assert_eq!(m1.set_patch(&m2, &[(1, 3), (0, 2)], None)?, m3);
        /// #   Ok(())
        /// # }
        /// # test_set_patch();
        /// ```
        set_patch, range: &[(usize, usize)], step: Option<&[usize]>);
    var_1_to_1_with_para!(view, new_shape: &[usize]);


    // innternal use
    pub(crate) fn val(&self) -> Tensor {
        self.var.borrow().val()
    }

    /// Use gradient or not, default is to use.
    pub fn set_grad(&self, use_gradient: bool) {
        self.var.borrow_mut().set_grad(use_gradient);
    }

    /// Reset net in the background.
    pub fn reset_net(&self) {
        self.var.borrow_mut().reset_net();
    }

    /// The current gradient for the Var.
    pub fn grad(&self) -> Result<Var, AutoDiffError> {
        Ok(Var {
            var: Rc::new(RefCell::new(self.var.borrow().grad()?))
        })
    }

    /// Apply back propagation to get numerical gradient.
    pub fn bp(&self) -> Result<(), AutoDiffError> {
        self.var.borrow().bp()?;

        Ok(())
    }

    pub fn step(&self, opt: &mut dyn Optimizer) -> Result<(), AutoDiffError> {
        self.var.borrow().step(opt)
    }

    /// Run the computation graph again.
    pub fn rerun(&self) -> Result<(), AutoDiffError> {
        self.var.borrow().rerun()
    }

    /// Extract input and output from the hidden net.
    pub fn get_io_var(&self) -> Result<(Vec<Var>, Vec<Var>), AutoDiffError> {
	let (mut inputs, mut outputs) = self.var.borrow().get_io_var()?;
	Ok((inputs.drain(..).map(|x| Var {var: Rc::new(RefCell::new(x))}).collect(),
	    outputs.drain(..).map(|x| Var {var: Rc::new(RefCell::new(x))}).collect()))
    }

    pub(crate) fn called_with(&self, op: Op,
                              others: &[&Var]) -> Result<Vec<Var>, AutoDiffError> {
        let refs: Vec<Rc<RefCell<VarInner>>> = others.iter().map(|x| x.var.clone()).collect();
        let mut var_inners = self.var.borrow().called_with(op, &refs)?;
        let ret: Vec<Var> = var_inners.drain(..).map(|x| Var {
            var: Rc::new(RefCell::new(x))
        }).collect();
        Ok(ret)
    }

    /// For debug.
    pub fn dump_net(&self) -> Rc<RefCell<Net>> {
        self.var.borrow().dump_net()
    }
    pub(crate) fn inner(&self) -> Rc<RefCell<VarInner>> {
	self.var.clone()
    }
    pub(crate) fn set_inner(var: VarInner) -> Var {
	Var {
	    var: Rc::new(RefCell::new(var))
	}
    }
}

// Test for equal
impl PartialEq for Var {
    fn eq(&self, other: &Self) -> bool {
        self.var.borrow().val().eq(&other.var.borrow().val())
    }
}

impl Eq for Var {}

impl fmt::Display for Var {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//        write!(f, "id: {}", self.id)?;
        write!(f, "tensor: {}", self.var.borrow().val())
    }
}

impl fmt::Debug for Var {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//        write!(f, "id: {}", self.id)?;
        write!(f, "tensor: {}", self.var.borrow().val())
    }
}

impl Clone for Var {
    fn clone(&self) -> Self {
        Var {
            var: Rc::new(RefCell::new(self.var.borrow().clone()))
        }
    }
}

// Operator overloading
impl Add for Var {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        self._add(&other)
    }
}

impl Sub for Var {
    type Output = Self;

    fn sub(self, other: Self) -> Self {
        self._sub(&other)
    }
}

impl Mul for Var {
    type Output = Self;

    fn mul(self, other: Self) -> Self {
        self._mul(&other)
    }
}

impl Div for Var {
    type Output = Self;

    fn div(self, other: Self) -> Self {
        self._div(&other)
    }
}

impl Neg for Var {
    type Output = Self;

    fn neg(self) -> Self {
        self._neg()
    }
}

impl TryFrom<Var> for f32 {
    type Error = AutoDiffError;

    fn try_from(value: Var) -> Result<Self, Self::Error> {
	let index = vec![0; value.size().len()];
	value.get_f32(&index)
    }
}

impl TryFrom<Var> for f64 {
    type Error = AutoDiffError;

    fn try_from(value: Var) -> Result<Self, Self::Error> {
	let index = vec![0; value.size().len()];
	value.get_f64(&index)
    }
}



#[macro_export]
macro_rules! var_f64 {
    ($a:expr) => {{
        trait Expand {
            fn expand(&self) -> Var;
        }
        impl Expand for [f64] {
            fn expand(&self) -> Var {
                Var::new_f64(&self, &[self.len(), 1])
            }
        }
        impl Expand for [[f64; 1]] {
            fn expand(&self) -> Var {
                let mut data = vec![];
                let m = self.len();
                let mut n = 0;
                for i in self {
                    n = i.len();
                    data.append(&mut i.to_vec());
                }
                Var::new_f64(&data, &[m, n])
            }
        }
        impl Expand for [[f64; 2]] {
            fn expand(&self) -> Var {
                let mut data = vec![];
                let m = self.len();
                let mut n = 0;
                for i in self {
                    n = i.len();
                    data.append(&mut i.to_vec());
                }
                Var::new_f64(&data, &[m, n])
            }
        }
        impl Expand for [[f64; 3]] {
            fn expand(&self) -> Var {
                let mut data = vec![];
                let m = self.len();
                let mut n = 0;
                for i in self {
                    n = i.len();
                    data.append(&mut i.to_vec());
                }
                Var::new_f64(&data, &[m, n])
            }
        }
        impl Expand for [[f64; 4]] {
            fn expand(&self) -> Var {
                let mut data = vec![];
                let m = self.len();
                let mut n = 0;
                for i in self {
                    n = i.len();
                    data.append(&mut i.to_vec());
                }
                Var::new_f64(&data, &[m, n])
            }
        }
        $a.expand()
    }}
}


#[cfg(test)]
mod tests {
    use super::*;
    use crate::op::OpCall;
    extern crate openblas_src;

    #[test]
    fn mul() {
        let a = Var::new(&[2., 3., 4., 5.], &[2, 2]);
        let b = Var::new(&[1., 2., 3., 4.], &[2, 2]);
        let c = a.ref_copy() * b.ref_copy();
        assert_eq!(c, Var::new(&[2., 6., 12., 20.], &[2, 2]));
        c.bp().unwrap();
        assert_eq!(a.grad().unwrap(), Var::new(&[1., 2., 3., 4.], &[2, 2]));
        assert_eq!(b.grad().unwrap(), Var::new(&[2., 3., 4., 5.], &[2, 2]));
    }

    #[test]
    fn test_mul_repeat_vars() {
        let a = Var::new(&[2., 3., 4., 5.], &[2, 2]);
        let b = Var::new(&[1., 2., 3., 4.], &[2, 2]);
        let c = a * b.ref_copy();
        let d = c * b; // repeat vars
        assert_eq!(d, Var::new(&[2., 12., 36., 80.], &[2, 2]));
    }

    #[test]
    fn test_add_in_fn() {
        let a = Var::new(&[2., 3., 4., 5.], &[2, 2]);
        let b = Var::new(&[1., 2., 3., 4.], &[2, 2]);
    
        fn my_mul(a: &Var, b: &Var) -> Var {
            a.ref_copy() * b.ref_copy()
        }
        let c = my_mul(&a, &b);
        assert_eq!(c, Var::new(&[2., 6., 12., 20.], &[2, 2]));
    }

    #[test]
    fn test_op_mse() {
        let a = Var::new(&[1., 2., 3., 4., 5., 6.,], &[3, 2]);
        let b = Var::new(&[2., 3., 4., 5., 6., 7.,], &[3, 2]);
        let c = a.mse_loss(&b).unwrap();
        assert_eq!(c , Var::new(&[1., ], &vec![1]));
    }

    #[test]
    fn test_linear() {
        use crate::op::Linear;
        
        let mut op1 = Linear::new(Some(2), Some(5), true);
        op1.set_weight(Var::new(&[1.,2.,3.,4.,5.,6.,7.,8.,9.,10.], &[2, 5]));
        op1.set_bias(Var::new(&[1.,2.,3.,4.,5.], &[5]));
        let input = Var::ones(&[3,2]);
        let output = op1.call(&[&input]).unwrap().pop().unwrap();
        assert_eq!(output, Var::new(&[8.0, 11.0, 14.0, 17.0, 20.0, 8.0, 11.0, 14.0, 17.0, 20.0, 8.0, 11.0, 14.0, 17.0, 20.0],
                                    &vec![3, 5]));
    }

    #[test]
    fn test_macro_tensor() {
        let a = var_f64!([1., 2., 3.,]);
        assert_eq!(a.size(), [3, 1]);
        let a1 = a.squeeze(None).unwrap();
        println!("{:?}", a1.size());
        let a = var_f64!([[1., 2.,],
                          [4., 5.,],
                          [4., 5.,]]);
        assert_eq!(a.size(), [3, 2]);
        let a = var_f64!([[1., 2., 3.,],
                          [4., 5., 6.,]]);
        assert_eq!(a.size(), [2, 3]);
        let a = var_f64!([[1., 2., 3., 7.],
                          [4., 5., 6., 8.]]);
        assert_eq!(a.size(), [2, 4]);
    }
}