1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! A generational index implementation.
//! A generational index is a map-a-like container, which
//! invalidate index/key when the item is removed,
//! even the container itself don't have the access to that index/key.
use std::fmt;

#[cfg(feature = "use-serde")]
use serde::{Serialize, Deserialize};

use crate::err::AutoDiffError;

/// GenKey index used for generational index.
#[cfg_attr(feature = "use-serde", derive(Serialize, Deserialize))]
#[derive(Debug, PartialEq, Eq, Ord, PartialOrd, Copy, Clone)]
pub struct GenKey {
    id: usize,
    gen: usize,
}
    
impl GenKey {
    pub fn new(id: usize, gen: usize) -> GenKey {
        GenKey { id, gen }
    }
}

impl fmt::Display for GenKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({}, {})", self.id, self.gen)
    }
}

/// A simple generational index implementation.
/// The data is stored in a read-only manner,
/// Use RefCell to get mutability.
/// Not secure, no index validity check.
#[cfg_attr(feature = "use-serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct GenIndex<T> {
    data: Vec<T>,
    generation: Vec<usize>,
    available: Vec<usize>,
}

impl<T> GenIndex<T> {
    /// Create an empty GenIndex
    pub fn new() -> GenIndex<T> {
        GenIndex::<T> {
            data: Vec::new(),
            generation: Vec::new(),
            available: Vec::new(),
        }
    }

    /// Clear the GenIndex
    pub fn clear(&mut self) {
        self.data = Vec::new();
        self.generation = Vec::new();
        self.available = Vec::new();
    }

    ///
    /// Check if a key is in the collection
    ///
    pub fn contains(&self, index: &GenKey) -> bool {
        index.id < self.generation.len() && self.generation[index.id] == index.gen
    }

    /// Return the registered item
    pub fn get(&self, index: &GenKey) -> Result<&T, AutoDiffError> {
        if index.id < self.generation.len() && self.generation[index.id] == index.gen {
            Ok(&self.data[index.id])
        } else {
            Err(AutoDiffError::new(&format!("GenIndex cannot find the item by key {:?}!", index)))
        }
    }

    /// Return a mut reference.
    pub fn get_mut(&mut self, index: &GenKey) -> Option<&mut T> {
        if index.id < self.generation.len() && self.generation[index.id] == index.gen {
            Option::Some(&mut self.data[index.id])
        } else {
            Option::None
        }
    }

    /// Number of item in the list.
    pub fn len(&self) -> usize {
        self.data.len() - self.available.len()
    }
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Add a new item to the list.
    pub fn insert(&mut self, val: T) -> GenKey {
        let mut ret = GenKey::new(0, 0);
        if self.available.is_empty() {
            ret.id = self.data.len();
            self.data.push(val);
            self.generation.push(0);
            ret.gen = 0;
        } else {
            ret.id = self.available.pop().expect("id in available");
            self.data[ret.id] = val;
            ret.gen = self.generation[ret.id];
        }
        ret
    }

    /// Remove an item from the list.
    pub fn remove(&mut self, index: &GenKey) -> Result<(), AutoDiffError> {
        if index.id < self.generation.len() && self.generation[index.id] == index.gen {
            self.generation[index.id] += 1;
            self.available.push(index.id);
            Ok(())
        } else {
            Err(AutoDiffError::new(&format!("index is not valid! {}", index)))
        }
    }

    /// Replace the item of the index with a new one.
    pub fn replace(&mut self, index: &GenKey, val: T) -> Result<(), AutoDiffError> {
        if index.id < self.data.len() && self.generation[index.id] == index.gen {
            self.data[index.id] = val;
            Ok(())
        } else {
            Err(AutoDiffError::new(&format!("index is not valid! {}", index)))
        }
    }

    pub fn iter_key(&self) -> GenIndexIter<T> {
        GenIndexIter::<T>::new(self)
    }
}


pub struct GenIndexIter<'a, T> {
    index: usize,
    gen_index_ref: &'a GenIndex<T>,
}
impl<'a, T> GenIndexIter<'a, T> {
    pub fn new(index_ref: &GenIndex<T>) -> GenIndexIter<T> {
        GenIndexIter {
            index: 0,
            gen_index_ref: index_ref,
        }
    }
}
impl<'a, T> Iterator for GenIndexIter<'a, T> {
    type Item = GenKey;
    
    fn next(&mut self) -> Option<GenKey> { // TODO: don't return Option<GenKey>, return Option<&GenKey>
        let ret: GenKey;
        if self.gen_index_ref.data.is_empty() {
            return None;
        }
        if self.gen_index_ref.data.len() == self.index {
            None
        } else {
            if self.gen_index_ref.available.is_empty() {
                ret = GenKey::new(self.index,
                                    self.gen_index_ref.generation[self.index]);
            } else {
                loop {
                    if self.gen_index_ref.data.len() == self.index {
                        return None;
                    }
                    if self.gen_index_ref.available.contains(&self.index) {
                        self.index += 1;
                    } else {
                        ret = GenKey::new(self.index,
                                            self.gen_index_ref.generation[self.index]);
                        break;
                    }
                }
            }
            
            self.index += 1;
            Some(ret)
        }
    }
}

impl<T> Default for GenIndex<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: PartialEq> PartialEq for GenIndex<T> {
    fn eq(&self, other: &Self) -> bool {
	if self.len() != other.len() {
	    false
	} else {
	    for (self_key, other_key) in
		self.iter_key().zip(other.iter_key()) {
		    if ! self.get(&self_key).expect("GenIndex bad").eq(
			other.get(&other_key).expect("GenIndex bad")) {
			return false;
		    }
		}
	    true
	}
    }
}

impl<T: Eq> Eq for GenIndex<T> {}

impl<T: fmt::Debug> fmt::Debug for GenIndex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
	writeln!(f, "generation: {:?}", self.generation)?;
	writeln!(f, "available: {:?}", self.available)?;
	writeln!(f, "data: {:?}", self.data)
    }
}



#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn genindex_new_add_del() {
        let mut g = GenIndex::<f32>::new();
        assert_eq!(g.len(), 0);
        let index1 = g.insert(1.);
        assert_eq!(g.len(), 1);
        assert_eq!(g.remove(&index1).expect(""), ());

        let index2 = g.insert(2.);
        let index3 = g.insert(3.);
        assert_eq!(g.len(), 2);
        assert_eq!(*g.get(&index2).expect(""), 2.);
        assert_eq!(*g.get(&index3).expect(""), 3.);

        g.clear();
    }

    #[test]
    fn test_gen_index() {
        #[derive(Debug, Copy, Clone)]
        struct A {
            v: u32,
        }
        let mut a = GenIndex::<A>::new();
    
        let index1 = a.insert(A { v: 10 });
        assert_eq!(index1, GenKey::new(0, 0));
        let index2 = a.insert(A { v: 20 });
        assert_eq!(index2, GenKey::new(1, 0));
    
        let tv1 = a.get(&index1).unwrap().v;
        assert_eq!(tv1, 10);
        let tv2 = a.get(&index2).unwrap().v;
        assert_eq!(tv2, 20);
        //let tv_none = a.get(&GenKey::new(0, 1));
        //assert_eq!(tv_none.unwrap().is_none(), true);
    
        let a2 = a.remove(&index2);
        let tv_none = a.get(&index2);
        //assert_eq!(tv_none.unwrap().is_none(), true);
        assert_eq!(a2.expect(""), ());
    
        let index3 = a.insert(A { v: 30 });
        assert_eq!(index3, GenKey::new(1, 1));
    }

    #[test]
    fn iter() {
        #[derive(Debug, Copy, Clone)]
        struct A {
            v: u32,
        }
        let mut a = GenIndex::<A>::new();

        let index1 = a.insert(A { v: 10 });
        let index2 = a.insert(A { v: 20 });
        let index3 = a.insert(A { v: 30 });

        let keys: Vec<GenKey> = a.iter_key().collect();
        assert_eq!(keys, vec![GenKey::new(0, 0), GenKey::new(1, 0), GenKey::new(2, 0)]);

        a.remove(&index2).expect("");
        let keys: Vec<GenKey> = a.iter_key().collect();
        assert_eq!(keys, vec![GenKey::new(0, 0), GenKey::new(2, 0)]);

        a.remove(&index3).expect("");
        let keys: Vec<GenKey> = a.iter_key().collect();
        assert_eq!(keys, vec![GenKey::new(0, 0)]);

        a.remove(&index1).expect("");
        let keys: Vec<GenKey> = a.iter_key().collect();
        assert_eq!(keys, vec![]);
    }
}