1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#![allow(clippy::redundant_closure_call)]
use std::cell::{RefCell};
use std::rc::Rc;

use tensor_rs::tensor::Tensor;
use super::{OpTrait, OpCall, Op, OpHandle};
use crate::err::AutoDiffError;

macro_rules! reduce_macro {
    ($a:ident, $b:expr, $c:ident, $d: tt) => {
        pub struct $a {
            handle: OpHandle,
            dim: Option<Vec<usize>>,
            keepdim: bool
        }
        impl $a {
            pub fn new(dim: Option<&[usize]>, keepdim: bool) -> $a{
                $a{
                    handle: OpHandle::new(),
                    dim: dim.map(|v| v.to_vec()),
                    keepdim,
                }
            }
            fn get_handle(&self) -> &OpHandle {
                &self.handle
            }
            fn get_handle_mut(&mut self) -> &mut OpHandle {
                &mut self.handle
            }
        }
        impl OpCall for $a {
            fn call(&mut self, inputs: &[&crate::var::Var]) -> Result<Vec<crate::var::Var>, AutoDiffError> {
                let new_one = $a {
                    handle: OpHandle::new(),
                    dim: self.dim.as_ref().map(|v| v.to_vec()),
                    keepdim: self.keepdim,
                };

                let op = Op::new(Rc::new(RefCell::new(Box::new(new_one))));

                inputs[0].called_with(op, &inputs[1..inputs.len()])
            }
        }
        impl OpTrait for $a {
     
            fn get_name(&self) -> String {
                ($b).to_string()
            }
            fn get_input_size(&self) -> usize {
                1
            }
            fn get_output_size(&self) -> usize {
                1
            }
            fn apply(&self, input: &[Tensor], output: &[Tensor]) {
                match &self.dim {
                    Some(v) => {
                        let v1 = v.clone();
                        output[0].swap(&input[0].$c(Some(&v1), self.keepdim));
                    },
                    None => {
                        output[0].swap(&input[0].$c(None, self.keepdim));
                    },
        }
            }
            fn grad(&self, input: &[Tensor], output_grad: &[Tensor], input_grad: &[Tensor]) {
                $d(input, output_grad, input_grad)
            }
            fn get_values(&self) -> Vec<Tensor> {
                Vec::new()
            }
            fn get_grads(&self) -> Vec<Tensor> {
                Vec::new()
            }
            fn set_values(&self, _v: &[Tensor]) {
            }
        }
    }
}




reduce_macro!(Argmax, "argmax", argmax,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));


reduce_macro!(Argmin, "argmin", argmin,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));


reduce_macro!(Logsumexp, "logsumexp", logsumexp,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));


reduce_macro!(Mean, "mean", mean,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));

reduce_macro!(Prod, "prod", prod,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));

reduce_macro!(Std, "std", std,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));

reduce_macro!(Sum, "sum", sum,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));

reduce_macro!(Variance, "var", var,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));

reduce_macro!(Max, "max", max,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));

reduce_macro!(Min, "min", min,
              (|input: &[Tensor],
               output_grad: &[Tensor],
               input_grad: &[Tensor]| {
                   unimplemented!();
               }));