1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#![allow(clippy::redundant_closure_call)]
use tensor_rs::tensor::Tensor;
use super::{OpTrait, OpHandle, OpCall, Op};
use super::macros::new_binary_op;

use std::cell::{RefCell};
use std::rc::Rc;

use crate::var::{Var};
use crate::err::AutoDiffError;

// max_pair
new_binary_op!(MaxPair, "max_pair",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].max_pair(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// max, in reduction
// min_pair
new_binary_op!(MinPair, "min_pair",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].min_pair(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// min, in reduction
// arg_sort
pub struct ArgSort {
    handle: OpHandle,
    dim: usize,
    descending: bool,
}
impl ArgSort {
    pub fn new(dim: usize, descending: bool) -> ArgSort {
        ArgSort {
            handle: OpHandle::new(),
            dim,
            descending,
        }
    }
    fn get_handle(&self) -> &OpHandle {
        &self.handle
    }
    fn get_handle_mut(&mut self) -> &mut OpHandle {
        &mut self.handle
    }
}
impl OpCall for ArgSort {
    fn call(&mut self, inputs: &[&Var])
            -> Result<Vec<Var>, AutoDiffError> {
        let new_one = ArgSort {
            handle: OpHandle::new(),
            dim: self.dim,
            descending: self.descending,
        };

        let op = Op::new(Rc::new(RefCell::new(Box::new(new_one))));

        inputs[0].called_with(op, &inputs[1..inputs.len()])
    }
}
impl OpTrait for ArgSort {

    fn get_name(&self) -> String {
        "arg_sort".to_string()
    }
    fn get_input_size(&self) -> usize {
        1
    }
    fn get_output_size(&self) -> usize {
        1
    }
    fn apply(&self, input: &[Tensor], output: &[Tensor]) {
        output[0].swap(&input[0].arg_sort(self.dim, self.descending))
    }
    fn grad(&self, input: &[Tensor], output_grad: &[Tensor], input_grad: &[Tensor]) {
        unimplemented!();
    }
    fn get_values(&self) -> Vec<Tensor> {
        Vec::new()
    }
    fn get_grads(&self) -> Vec<Tensor> {
        Vec::new()
    }
    fn set_values(&self, _v: &[Tensor]) {
    }
}
// eq_t (use eq_elem)
new_binary_op!(EqElem, "eq_t",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].eq_t(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// equal, 0 is == 1 is !=
new_binary_op!(Equal, "equal",
               (|a:&[Tensor], b:&[Tensor]|
                if a[0].equal(&a[1]) {
                    b[0].swap(&Tensor::zeros(&[1]))
                } else {
                    b[0].swap(&Tensor::ones(&[1]))
                }),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// ge
new_binary_op!(Ge, "ge",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].ge(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// gt
new_binary_op!(Gt, "gt",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].gt(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// le
new_binary_op!(Le, "le",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].le(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// lt
new_binary_op!(Lt, "lt",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].lt(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));
// ne
new_binary_op!(Ne, "ne",
               (|a:&[Tensor], b:&[Tensor]|
                b[0].swap(&a[0].ne(&a[1]))
               ),
               (|input: &[Tensor], output_grad: &[Tensor],
                input_grad: &[Tensor]| {
                    unimplemented!();
               }));