1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
use tensor_rs::tensor::Tensor;
use super::{OpTrait, OpCall, Op, OpHandle};
use std::cell::{RefCell};
use std::rc::Rc;
use crate::var::{Var};
use crate::err::AutoDiffError;
pub struct Linear {
in_fea: Option<usize>,
out_fea: Option<usize>,
bias_option: bool,
weight: Tensor,
bias: Tensor,
weight_grad: Tensor,
bias_grad: Tensor,
handle: OpHandle,
}
impl Linear {
pub fn new(in_features: Option<usize>,
out_features: Option<usize>,
bias: bool) -> Linear {
Linear {
in_fea: in_features,
out_fea: out_features,
bias_option: bias,
weight: Tensor::new(),
bias: Tensor::new(),
weight_grad: Tensor::new(),
bias_grad: Tensor::new(),
handle: OpHandle::new(),
}
}
pub fn weight(&self) -> &Tensor {
&self.weight
}
pub fn set_weight(&self, var: Var) {
self.weight.data_copy(&var.val());
}
pub fn bias(&self) -> &Tensor {
&self.bias
}
pub fn set_bias(&self, var: Var) {
self.bias.data_copy(&var.val());
}
handle_method!();
}
impl OpCall for Linear {
fn call(&mut self, inputs: &[&Var]) -> Result<Vec<Var>, AutoDiffError> {
let new_one = Linear {
in_fea: self.in_fea,
out_fea: self.out_fea,
bias_option: self.bias_option,
weight: self.weight.ref_copy(),
bias: self.bias.ref_copy(),
weight_grad: self.weight_grad.ref_copy(),
bias_grad: self.bias_grad.ref_copy(),
handle: OpHandle::new(), // TODO; change this to None, this shold never be used.
};
let op = Op::new(Rc::new(RefCell::new(Box::new(new_one))));
Ok(inputs[0].called_with(op, &inputs[1..inputs.len()])?)
}
}
impl OpTrait for Linear {
fn get_name(&self) -> String {
"Linear".to_string()
}
fn get_input_size(&self) -> usize {
1
}
fn get_output_size(&self) -> usize {
1
}
fn apply(&self, inputs: &[Tensor],
outputs: &[Tensor]) {
// TODO go through condition where dimension is missing somewhere.
//println!("left sie: {:?}, right size: {:?}", inputs[0], self.weight);
let ret = inputs[0].matmul(&self.weight);
outputs[0].data_copy(&ret);
//println!("matmut done");
if self.bias_option {
let ret = outputs[0].add(&self.bias);
outputs[0].data_copy(&ret);
}
}
fn grad(&self, inputs: &[Tensor],
output_grad: &[Tensor],
input_grad: &[Tensor]) {
if inputs.is_empty() {
panic!("Expect one input tensor");
}
if inputs[0].size()[1] != self.weight.size()[0] {
panic!("Expect input dimension matches weight dimension {:?}, {:?}",
inputs[0].size(), self.weight.size());
}
if inputs[0].size()[0] != output_grad[0].size()[0] {
panic!("Expect input population matches output gradient population {:?}, {:?}",
inputs[0].size(), output_grad[0].size());
}
if output_grad[0].size()[1] != self.weight.size()[1] {
panic!("Expect output gradient dimension matches weight dimension {:?}, {:?}",
output_grad[0].size(), self.weight.size());
}
input_grad[0].swap(&output_grad[0].matmul(&self.weight.permute(&[1,0])));
self.weight_grad.swap(&inputs[0].outer(&output_grad[0], Some(true)));
if self.bias_option {
self.bias_grad.swap(&output_grad[0].mean(Some(&[0]), false));
}
}
fn get_values(&self) -> Vec<Tensor> {
let mut ret = vec![self.weight.clone()];
if self.bias_option {
ret.push(self.bias.clone());
}
ret
}
fn set_values(&self, v: &[Tensor]) {
self.weight.swap(&v[0].clone());
if self.bias_option {
self.bias.swap(&v[1].clone());
}
}
/// access gradient values
fn get_grads(&self) -> Vec<Tensor> {
let mut ret = vec![self.weight_grad.clone()];
if self.bias_option {
ret.push(self.bias_grad.clone());
}
ret
}
}
//impl OpTrait for Linear2 {
// /// A conventional name for the op
// fn get_name(&self) -> String {
// "ab".to_string()
// }
//
// /// The number of input needs by this op.
// fn get_input_size(&self) -> usize {
// 2
// }
//
// /// The number of output produced by this op.
// fn get_output_size(&self) -> usize {
// 1
// }
//
// fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
//
// }
//
// fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
//
// }
//
// /// access weight values
// fn get_values(&self) -> Vec<&Tensor> {
// Vec::new()
// }
// fn set_values(&self, v: &[Tensor]) {
// }
// /// access gradient values
// fn get_grads(&self) -> Vec<&Tensor> {
// Vec::new()
// }
//}
//
//pub struct Linear {
// in_fea: Option<usize>,
// out_fea: Option<usize>,
// bias_option: bool,
// weight: Tensor,
// bias: Tensor,
// weight_grad: Tensor,
// bias_grad: Tensor,
//}
//impl Linear {
// pub fn new(in_features: Option<usize>, out_features: Option<usize>, bias: bool) -> Linear{
// let mut ret = Linear {
// in_fea: in_features,
// out_fea: out_features,
// bias_option: bias,
// weight: Tensor::new(),
// bias: Tensor::new(),
// weight_grad: Tensor::new(),
// bias_grad: Tensor::new(),
// };
// if ret.in_fea != Option::None && ret.out_fea != Option::None {
// ret._new();
// }
// ret
// }
// fn _new(&mut self) {
// self.weight = Tensor::fill(&[self.in_fea.unwrap(), self.out_fea.unwrap()], 0.);
// self.bias = Tensor::fill(&[self.out_fea.unwrap(),], 0.);
// }
//
// pub fn weight(&self) -> &Tensor {
// &self.weight
// }
//
// pub fn set_weight(&self, var: Var) {
// self.weight.swap(var.val());
// }
//
// pub fn bias(&self) -> &Tensor {
// &self.bias
// }
//
// pub fn set_bias(&self, var: Var) {
// self.bias.swap(var.val());
// }
//
//}
//impl OpTrait for Linear {
// fn get_name(&self) -> String {
// "Linear".to_string()
// }
// fn get_input_size(&self) -> usize {
// 1
// }
// fn get_output_size(&self) -> usize {
// 1
// }
// fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
// if self.in_fea == None || self.out_fea == None {
// if self.in_fea == None {
// let in_size = input[0].size();
// self.in_fea = Some(in_size[in_size.len()-1]);
// }
// if self.out_fea == None {
// let out_size = output[0].size();
// self.out_fea = Some(out_size[0]);
// }
// self._new();
// }
//
// //println!("left sie: {:?}, right size: {:?}", input[0].size(), self.weight.size());
// let ret = input[0].matmul(&self.weight);
// output[0].swap(ret);
// //println!("matmut done");
// if self.bias_option {
// let ret = output[0].add(&self.bias);
// output[0].swap(ret);
// }
// }
// fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
// if input.is_empty() {
// panic!("Expect one input tensor");
// }
// if input[0].size()[1] != self.weight.size()[0] {
// panic!("Expect input dimension matches weight dimension {:?}, {:?}",
// input[0].size(), self.weight.size());
// }
// if input[0].size()[0] != output_grad[0].size()[0] {
// panic!("Expect input population matches output gradient population {:?}, {:?}",
// input[0].size(), output_grad[0].size());
// }
// if output_grad[0].size()[1] != self.weight.size()[1] {
// panic!("Expect output gradient dimension matches weight dimension {:?}, {:?}",
// output_grad[0].size(), self.weight.size());
// }
//
// input_grad[0].swap(output_grad[0].matmul(&self.weight.permute(&[1,0])));
// self.weight_grad.swap(input[0].outer(output_grad[0], Some(true)));
// if self.bias_option {
// self.bias_grad.swap(output_grad[0].mean(Some(&[0]), false));
// }
// }
//
// fn get_values(&self) -> Vec<&Tensor> {
// let mut ret = vec![&self.weight];
// if self.bias_option {
// ret.push(&self.bias);
// }
// ret
// }
// fn set_values(&self, v: &[Tensor]) {
// self.weight.swap(v[0].clone());
// if self.bias_option {
// self.bias.swap(v[1].clone());
// }
// }
// fn get_grads(&self) -> Vec<&Tensor> {
// let mut ret = vec![&self.weight_grad];
// if self.bias_option {
// ret.push(&self.bias_grad);
// }
// ret
// }
//}
// Bilinear