1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
#![allow(clippy::redundant_closure)]
use std::collections::{BTreeSet, BTreeMap};
use std::fmt;
use crate::collection::generational_index::{GenIndex, GenKey};
use crate::collection::graph::Graph;
use tensor_rs::tensor::Tensor;
use crate::op::Op;
use crate::err::AutoDiffError;
/// The computation network.
/// Connection has duplication.
pub struct Net {
data: GenIndex<Tensor>,
ops: GenIndex<Op>,
set_mark: BTreeSet<GenKey>,
graph: Graph<GenKey, GenKey>,
data_grad: BTreeMap<GenKey, Tensor>,
}
impl Net {
pub fn new() -> Net {
Net {
data: GenIndex::new(),
ops: GenIndex::new(),
set_mark: BTreeSet::new(),
graph: Graph::new(),
data_grad: BTreeMap::new(),
}
}
pub fn get_data(&self) -> &GenIndex<Tensor> {
&self.data
}
pub fn get_data_mut(&mut self) -> &mut GenIndex<Tensor> {
&mut self.data
}
pub fn get_ops(&self) -> &GenIndex<Op> {
&self.ops
}
pub fn get_ops_mut(&mut self) -> &mut GenIndex<Op> {
&mut self.ops
}
pub fn add_tensor(&mut self, t: Tensor) -> GenKey {
let id = self.data.insert(t);
self.graph.add_data(&id).expect("");
id
}
pub fn get_tensor(&self, id: GenKey) -> Result<Tensor, AutoDiffError> {
match self.data.get(&id) {
Ok(v) => {Ok(v.ref_copy())}, // shallow copy a tensor.
Err(v) => {Err(v)}
}
}
pub fn set_tensor(&mut self, id: GenKey, val: Tensor) -> Result<(), ()> {
self.data.replace(&id, val)?;
Ok(())
}
/// Insert operator into the network.
pub fn add_op(&mut self, op: Op) -> GenKey {
let id = self.ops.insert(op);
self.graph.add_op(&id).expect("");
id
}
pub fn get_op(&self, id: GenKey) -> Result<Op, AutoDiffError> {
Ok(self.ops.get(&id)?.ref_copy())
}
pub fn get_grad(&self, id: GenKey) -> Result<Tensor, AutoDiffError> {
match self.data_grad.get(&id) {
Some(v) => {Ok(v.ref_copy())},
None => {Err(AutoDiffError::new(&format!("Data {:?} doesn't ahave gradient yet.", id)))}
}
}
// pub fn is_dangling_var(&self, var: &Var) -> Result<bool, ()> {
// if !self.data.contains(var.get_id()) {
// Err(())
// } else if self.graph.iter_op_given_input(var.get_id()).expect("").count() == 0 &&
// self.graph.iter_op_given_output(var.get_id()).expect("").count() == 0{
// Ok(true)
// } else {
// Ok(false)
// }
//
// }
// ///
// /// Remove a concrete op or composed func from the graph.
// ///
// pub fn del_func_or_op(&mut self, func: &Func) {
// let _ = self.ops.remove(func.get_id());
// let _ = self.graph.drop_op(func.get_id());
//
// // ignore the result as to allow duplicate delete
//
// //
// // The following dosen't work
// // because if the composed goes out of scope doesn't mean
// // its member ops go out of scope.
// //
// // Check to see the func type.
// // If it is a op, delete it
// // If it is a func, find all the underlying op
// // and var in between and remove them.
// //
//
// }
// ///
// /// Disconnect the variable and the function the variable is the input.
// /// Delete the variable if it becomes the dangling variable.
// ///
// pub fn decouple_input(&mut self, func: &Func) -> Vec<GenKey> {
// let mut decoupled_inputs = Vec::new();
// let inputs: Vec<GenKey> = self.graph.iter_input_given_op(func.get_id())
// .expect("").map(|x| x.clone()).collect();
// for i in inputs {
// self.graph.decouple_data_func(&i, func.get_id()).expect("");
// decoupled_inputs.push(i);
// }
// decoupled_inputs
// }
///
/// Build input-operator-output relation, with given components.
///
pub fn connect(&mut self, input: &[GenKey], op: GenKey, output: &[GenKey]) {
self.graph.connect(input, output, &op).expect("");
}
/// set the set_mark, set_mark is used to label var with input value with it.
pub fn set_mark(&mut self, did: &GenKey) {
self.set_mark.insert(*did);
}
pub fn unset_mark(&mut self, did: &GenKey) {
self.set_mark.remove(did);
}
/// Forward evaluate the computaiton graph.
pub fn eval(&mut self) -> Result<(), BTreeSet<GenKey>> {
let mut all_input = Vec::new();
for i in &self.set_mark {
all_input.push(*i);
}
self.graph
.walk(
&all_input[..],
true,
|input, output, op| {
//println!("op: {}", self.ops.get(op).expect("").get_name());
let mut inputs: Vec<Tensor> = Vec::new();
for input_id in input {
let a = self.data.get(input_id).expect("").ref_copy();
inputs.push(a);
}
let mut outputs: Vec<Tensor> = Vec::new();
for output_id in output {
let a = self.data.get(output_id).expect("").ref_copy();
outputs.push(a);
}
self.ops
.get(op)
.expect("")
.apply(&inputs, &outputs);
//println!("var.rs: {:?}", outputs[0].size());
}
)?;
Ok(())
}
// pub fn eval_op(&self, input: &[&Var], func: &Func, output: &[&Var]) {
// let mut inputs: Vec<&Tensor> = Vec::new();
// for input_var in input {
// let a = self.data.get(input_var.get_id()).expect("");
// inputs.push(a);
// }
//
// let mut outputs: Vec<&Tensor> = Vec::new();
// for output_var in output {
// let a = self.data.get(output_var.get_id()).expect("");
// outputs.push(a);
// }
//
// self.ops
// .get(func.get_id())
// .expect("")
// .apply(&inputs, &outputs);
// }
// pub fn bptt_scale(&mut self, r: f32) {
// let output = self.graph.get_output_edge_data();
// let mut output_grad = BTreeMap::new();
// for i in &output {
// output_grad.insert(*i,
// Tensor::fill(&self.data.get(i).expect("").size(),
// r));
// }
// self.bptt(&output_grad);
// }
pub fn bptt(&mut self, output_grad: &BTreeMap<GenKey, Tensor>) {
let mut output = Vec::new();
self.data_grad.clear();
for (k, v) in output_grad {
output.push(*k);
self.data_grad.insert(*k, v.clone());
}
for i in self.graph.iter_data() {
self.data_grad.entry(*i).or_insert(Tensor::new());
}
self.graph
.walk(
&output[..],
false,
|output_grads, input_grads, op| {
//println!("op, bptt: {}", self.ops.get(op).expect("").get_name());
// collect input tensor.
let mut inputs: Vec<Tensor> = Vec::new();
for input_id in input_grads {
//println!("bptt {:?}", input_id);
let a = self.data.get(input_id).expect("").ref_copy();
inputs.push(a);
}
//println!("input: size {:?}", inputs.len());
// collect the output tensor gradient (forward view).
let mut output_grad: Vec<Tensor> = Vec::new();
for output_id in output_grads {
//println!("bptt 2 {:?}", output_id);
let a = self.data_grad.get(output_id).expect("").ref_copy();
output_grad.push(a);
}
//println!("output grad: size {:?}", output_grad.len());
// collect the input tensor gradient (forward view).
let mut input_grad: Vec<Tensor> = Vec::new();
for input_id in input_grads {
//println!("bptt 3 {:?}", input_id);
let a = self.data_grad.get(input_id).expect("").ref_copy();
input_grad.push(a);
}
//println!("input grad: size {:?}", input_grad.len());
self.ops
.get(op)
.expect("")
.grad(&inputs, &output_grad, &input_grad);
//println!("var.rs: {:?}", 1);
}
).expect("");
}
/// Iterate over all ops, no order guarantee
pub fn visit_op<F>(&mut self, closure: F,
allow: Option<Vec<GenKey>>,
skip: Option<Vec<GenKey>>)
where F: Fn(&Op) {
let allow_list = if let Some(val) = allow { val } else {Vec::new()};
let skip_list = if let Some(val) = skip {val} else {Vec::new()};
for i in self.graph.iter_op() {
if (allow_list.is_empty() && skip_list.is_empty()) ||
(!allow_list.is_empty() && allow_list.contains(i)) ||
(!skip_list.is_empty() && !skip_list.contains(i) ) {
closure(self.ops.get(i).expect(""));
}
}
}
pub fn visit_data<F>(&mut self, closure: F)
where F: Fn(GenKey, &Tensor) {
for i in self.graph.iter_data() {
closure(*i, self.data.get(i).expect(""));
}
}
/// Move content in other network into self.
/// Return new ids for those have origianl_keys in the old network.
pub fn append(&mut self, other: &Self,
original_keys: &[GenKey]) -> Result<Vec<GenKey>, AutoDiffError> {
let mut data_key_map = BTreeMap::new();
let mut ret_keys = Vec::new();
for key in other.get_data().iter_key() {
let new_key = self.add_tensor(other.get_tensor(key)?);
if original_keys.contains(&key) {
ret_keys.push(new_key);
}
data_key_map.insert(key, new_key);
}
let mut op_key_map = BTreeMap::new();
for key in other.get_ops().iter_key() {
let new_key = self.add_op(other.get_op(key)?);
op_key_map.insert(key, new_key);
}
self.graph.append(&other.graph, data_key_map, op_key_map)?;
Ok(ret_keys)
}
}
impl fmt::Debug for Net {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "Dumping Net")?;
for i in self.data.iter_key() {
write!(f, "id: {:?} data: {:?}", i, self.data.get(&i))?;
}
writeln!(f, "data_grad")?;
for (k, v) in self.data_grad.iter() {
write!(f, "id: {:?} data: {:?}", k, v)?;
}
write!(f, "graph: {:?}", self.graph)
}
}