1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
use rand::prelude::*;
use rand_distr::{Normal, Uniform, Distribution};
use tensor_rs::tensor::*;
pub struct RNG {
rng: StdRng,
}
impl RNG {
pub fn new() -> RNG {
RNG {
rng: StdRng::seed_from_u64(671),
}
}
pub fn set_seed(&mut self, seed: u64) {
self.rng = StdRng::seed_from_u64(seed);
}
pub fn gen_range_usize(&mut self, left: usize, right: usize,
vec_size: Option<usize>) -> Vec::<usize> {
let size = if let Some(val) = vec_size {val} else {1};
let mut ret = Vec::new();
let mut index = 0;
loop {
ret.push(self.rng.gen_range(left, right));
index += 1;
if index >= size {
break;
}
}
ret
}
pub fn bernoulli() {}
pub fn cauchy() {}
pub fn exponential() {}
pub fn geometric() {}
pub fn log_normal() {}
pub fn normal(&mut self, dim: &[usize], mean: f32, std: f32) -> Tensor {
let elem = dim.iter().product();
let mut dta = Vec::<f32>::with_capacity(elem);
let normal = Normal::new(mean, std).expect("");
for _i in 0..elem {
dta.push(normal.sample(&mut self.rng));
}
Tensor::from_vec_f32(&dta, dim)
}
pub fn uniform(&mut self, dim: &[usize], from: f32, to: f32) -> Tensor {
let elem: usize = dim.iter().product();
let mut dta = Vec::<f32>::with_capacity(elem);
let normal = Uniform::new(from, to);
for _i in 0..elem {
dta.push(normal.sample(&mut self.rng));
}
Tensor::from_vec_f32(&dta, dim)
}
pub fn normal_(&mut self, o: &Tensor, mean: f32, std: f32) {
let t = self.normal(&o.size(), mean, std);
o.swap(t);
}
pub fn uniform_(&mut self, o: &Tensor, from: f32, to: f32) {
let t = self.uniform(&o.size(), from, to);
o.swap(t);
}
}