1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/// A generational index implementation.
/// A generational index is a map-a-like container, which
/// invalidate index/key when the item is removed,
/// even the container itself don't have the access to that index/key.
use std::fmt;

/// NetIndex index used for generational index.
#[derive(Debug, PartialEq, Eq, Ord, PartialOrd, Copy, Clone)]
pub struct NetIndex {
    id: usize,
    gen: usize,
}

impl NetIndex {
    pub fn new(id: usize, gen: usize) -> NetIndex {
        NetIndex { id, gen }
    }
}

impl fmt::Display for NetIndex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({}, {})", self.id, self.gen)
    }
}

/// A simple generational index implementation.
/// The data is stored in a read-only manner,
/// Use RefCell to get mutability.
/// Not secure, no index validity check.
pub struct GenIndex<T> {
    data: Vec<T>,
    generation: Vec<usize>,
    available: Vec<usize>,
}

impl<T> GenIndex<T> {
    /// Create an empty GenIndex
    pub fn new() -> GenIndex<T> {
        GenIndex::<T> {
            data: Vec::new(),
            generation: Vec::new(),
            available: Vec::new(),
        }
    }

    /// Clear the GenIndex
    pub fn clear(&mut self) {
        self.data = Vec::new();
        self.generation = Vec::new();
        self.available = Vec::new();
    }

    ///
    /// Check if a key is in the collection
    ///
    pub fn contains(&self, index: &NetIndex) -> bool {
        index.id < self.generation.len() && self.generation[index.id] == index.gen
    }

    /// Return the registered item
    pub fn get(&self, index: &NetIndex) -> Option<&T> {
        if index.id < self.generation.len() && self.generation[index.id] == index.gen {
            Option::Some(&self.data[index.id])
        } else {
            Option::None
        }
    }

    /// Return a mut reference.
    pub fn get_mut(&mut self, index: &NetIndex) -> Option<&mut T> {
        if index.id < self.generation.len() && self.generation[index.id] == index.gen {
            Option::Some(&mut self.data[index.id])
        } else {
            Option::None
        }
    }

    /// Number of item in the list.
    pub fn len(&self) -> usize {
        self.data.len() - self.available.len()
    }
    pub fn is_empty(self) -> bool {
        self.len() == 0
    }

    /// Add a new item to the list.
    pub fn insert(&mut self, val: T) -> NetIndex {
        let mut ret = NetIndex::new(0, 0);
        if self.available.is_empty() {
            ret.id = self.data.len();
            self.data.push(val);
            self.generation.push(0);
            ret.gen = 0;
        } else {
            ret.id = self.available.pop().expect("id in available");
            self.data[ret.id] = val;
            ret.gen = self.generation[ret.id];
        }
        ret
    }

    /// Remove an item from the list.
    pub fn remove(&mut self, index: &NetIndex) -> Result<(), ()> {
        if index.id < self.generation.len() && self.generation[index.id] == index.gen {
            self.generation[index.id] += 1;
            self.available.push(index.id);
            Ok(())
        } else {
            Err(())
        }
    }

    /// Replace the item of the index with a new one.
    pub fn replace(&mut self, index: &NetIndex, val: T) -> Result<(), ()> {
        if index.id < self.data.len() && self.generation[index.id] == index.gen {
            self.data[index.id] = val;
            Ok(())
        } else {
            Err(())
        }
    }

    pub fn iter_key(&self) -> GenIndexIter<T> {
        GenIndexIter::<T>::new(self)
    }

    pub fn append(&mut self, other: &mut GenIndex<T>) {
        
    }
}


pub struct GenIndexIter<'a, T> {
    index: usize,
    gen_index_ref: &'a GenIndex<T>,
}
impl<'a, T> GenIndexIter<'a, T> {
    pub fn new(index_ref: &GenIndex<T>) -> GenIndexIter<T> {
        GenIndexIter {
            index: 0,
            gen_index_ref: index_ref,
        }
    }
}
impl<'a, T> Iterator for GenIndexIter<'a, T> {
    type Item = NetIndex;
    
    fn next(&mut self) -> Option<NetIndex> {
        let ret: NetIndex;
        if self.gen_index_ref.data.is_empty() {
            return None;
        }
        if self.gen_index_ref.data.len() == self.index {
            return None;
        } else {
            if self.gen_index_ref.available.is_empty() {
                ret = NetIndex::new(self.index,
                                    self.gen_index_ref.generation[self.index]);
            } else {
                loop {
                    if self.gen_index_ref.data.len() == self.index {
                        return None;
                    }
                    if self.gen_index_ref.available.contains(&self.index) {
                        self.index += 1;
                    } else {
                        ret = NetIndex::new(self.index,
                                            self.gen_index_ref.generation[self.index]);
                        break;
                    }
                }
            }
            
            self.index += 1;
            return Some(ret);
        }
    }
}


#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn genindex_new_add_del() {
        let mut g = GenIndex::<f32>::new();
        assert_eq!(g.len(), 0);
        let index1 = g.insert(1.);
        assert_eq!(g.len(), 1);
        assert_eq!(g.remove(&index1).expect(""), ());

        let index2 = g.insert(2.);
        let index3 = g.insert(3.);
        assert_eq!(g.len(), 2);
        assert_eq!(*g.get(&index2).expect(""), 2.);
        assert_eq!(*g.get(&index3).expect(""), 3.);

        g.clear();
    }

    #[test]
    fn test_gen_index() {
        #[derive(Debug, Copy, Clone)]
        struct A {
            v: u32,
        }
        let mut a = GenIndex::<A>::new();
    
        let index1 = a.insert(A { v: 10 });
        assert_eq!(index1, NetIndex::new(0, 0));
        let index2 = a.insert(A { v: 20 });
        assert_eq!(index2, NetIndex::new(1, 0));
    
        let tv1 = a.get(&index1).unwrap().v;
        assert_eq!(tv1, 10);
        let tv2 = a.get(&index2).unwrap().v;
        assert_eq!(tv2, 20);
        let tv_none = a.get(&NetIndex::new(0, 1));
        assert_eq!(tv_none.is_none(), true);
    
        let a2 = a.remove(&index2);
        let tv_none = a.get(&index2);
        assert_eq!(tv_none.is_none(), true);
        assert_eq!(a2.expect(""), ());
    
        let index3 = a.insert(A { v: 30 });
        assert_eq!(index3, NetIndex::new(1, 1));
    }

    #[test]
    fn iter() {
        #[derive(Debug, Copy, Clone)]
        struct A {
            v: u32,
        }
        let mut a = GenIndex::<A>::new();

        let index1 = a.insert(A { v: 10 });
        let index2 = a.insert(A { v: 20 });
        let index3 = a.insert(A { v: 30 });

        let keys: Vec<NetIndex> = a.iter_key().collect();
        assert_eq!(keys, vec![NetIndex::new(0, 0), NetIndex::new(1, 0), NetIndex::new(2, 0)]);

        a.remove(&index2).expect("");
        let keys: Vec<NetIndex> = a.iter_key().collect();
        assert_eq!(keys, vec![NetIndex::new(0, 0), NetIndex::new(2, 0)]);

        a.remove(&index3).expect("");
        let keys: Vec<NetIndex> = a.iter_key().collect();
        assert_eq!(keys, vec![NetIndex::new(0, 0)]);

        a.remove(&index1).expect("");
        let keys: Vec<NetIndex> = a.iter_key().collect();
        assert_eq!(keys, vec![]);
    }
}