1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
use crate::tensor::gen_tensor::GenTensor;

pub trait ReduceTensor {
    type TensorType;

    fn argmax(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType;
    fn argmin(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType;
    fn dist();
    fn logsumexp(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType;
    fn mean(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
    fn median();
    fn mode();
    fn norm();
    fn prod(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
    fn std(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
    fn std_mean();
    //fn sum(&self, dim: usize, keepdim: bool) -> Self::TensorType;
    fn sum(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
    fn unique();
    fn unique_consecutive();
    fn var(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
    fn var_mean();

    fn max(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
    fn min(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType;
}

impl<T> GenTensor<T> where T: num_traits::Float {
    fn _argmax_min(&self, dim: Option<&[usize]>, keep_dim: bool, max: bool) -> Self {
        if keep_dim {
            panic!("argmax cannot keep dim");
        }
        let dim2aggregate;
        if dim.is_some() {
            dim2aggregate = (0..self.size().len()).filter(|x| dim.unwrap().contains(&x)).collect();
        } else {
            dim2aggregate = self.size().to_vec();
        }
        let dim = dim2aggregate;
        
        // build return tensor dimension.
        let mut aggregated = false;
        let ret_dim: Vec<usize> = (0..self.size().len()).map(|x|
                                                             if dim.contains(&x) {
                                                                 if !aggregated {
                                                                     aggregated = true;
                                                                     dim.len()
                                                                 } else {
                                                                     1
                                                                 }
                                                             } else {
                                                                 self.size()[x]
                                                             }
        ).collect();
        let mut ret = Self::empty(&ret_dim);
        //println!("{:?}, {:?}, {:?}", ret.size(), self.size(), dim);

        let kept_dim: Vec<usize> = (0..self.size().len()).filter(|x| !dim.contains(&x)).collect();
        let mut index = vec![0; kept_dim.len()]; // index for the loop.

        loop {
            let mut patch_index: Vec::<(usize, usize)> = Vec::new();
            let mut output_index: Vec<usize> = Vec::new();
            let mut kept_dim_step = 0;
            let mut aggregated = false;
            for i in 0..self.size().len() {
                if dim.contains(&i) {
                    patch_index.push((0, self.size()[i]));
                    if !aggregated {
                        output_index.push(0);
                        aggregated = true;
                    }
                } else {
                    patch_index.push((index[kept_dim_step], index[kept_dim_step]+1));
                    output_index.push(index[kept_dim_step]);
                    kept_dim_step += 1;
                }
            }
            //println!("index: {:?}, patch_index: {:?}, output_index: {:?}", index, patch_index, output_index);

            //let value = closure(self.get_patch(&patch_index, None).get_data());
            let the_patch = self.get_patch(&patch_index, None);
            let mut max_value = the_patch.get_data()[0];
            let mut max_index = 0;
            for (elem_index, i) in the_patch.get_data().iter().enumerate() {
                if max {
                    if max_value < *i {
                        max_value = *i;
                        max_index = elem_index;
                    }
                } else {
                    if max_value > *i {
                        max_value = *i;
                        max_index = elem_index;
                    }
                }
            }
            let dimpos_elem = the_patch.index2dimpos(max_index);
            let mut dimpos_elem2 = Vec::new();
            for (dim_index, v) in dimpos_elem.iter().enumerate() {
                if dim.contains(&dim_index) {
                    dimpos_elem2.push(*v);
                } 
            }
            let dimpos_elem = dimpos_elem2;
            //println!("dispos_elem: {:?}", dimpos_elem);
            for (set_index, i) in dimpos_elem.iter().enumerate() {
                let mut dest_index = output_index.to_vec();
                dest_index[dim[0]] = set_index;
                //println!("dest_index: {:?}", dest_index);
                ret.set(&dest_index, T::from(*i).unwrap());
            }
            
            for i in 0..index.len() {
                index[kept_dim.len() -i -1] += 1;
                if index[kept_dim.len() -i -1] >= self.size()[kept_dim[kept_dim.len() -i -1]] {
                    index[kept_dim.len() -i -1] = 0;
                } else {
                    break
                }
            }

            if index == vec![0; kept_dim.len()] {
                break
            }
        }
        
        ret
    }
}

impl<T> ReduceTensor for GenTensor<T> where T: num_traits::Float {
    type TensorType = GenTensor<T>;

    fn argmax(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType {
        self._argmax_min(dim, keep_dim, true)
    }
    fn argmin(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType {
        self._argmax_min(dim, keep_dim, false)
    }
    fn dist() {unimplemented!();}
    fn logsumexp(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let mut max = x[0];
                             for i in x {
                                 if max < *i {
                                     max = *i;
                                 }
                             }

                             let mut sum = T::zero();
                             for i in x {
                                 sum = sum + (*i - max).exp();
                             }
                             max + sum.ln()
                         }
        )
    }
    /// Returns the mean value of the tensor along dim row.
    fn mean(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T> {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let n = x.len();
                             let mut sum = T::zero();
                             for i in x {
                                 sum = sum + *i;
                             }
                             sum / T::from(n).expect("")
                         }
        )
    }
    fn median(){unimplemented!();}
    fn mode() {unimplemented!();}
    fn norm() {unimplemented!();}
    fn prod(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T> {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let mut p = T::one();
                             for i in x {
                                 p = p * (*i);
                             }
                             p
                         }
        )
    }
    fn std(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T> {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let n = x.len();
                             let mut sum = T::zero();
                             let mut sum2 = T::zero();
                             for i in x {
                                 sum = sum + *i;
                                 sum2 = sum2 + *i*(*i);
                             }
                             let sum2 = sum2 / T::from(n).expect("");
                             let sum = sum / T::from(n).expect("");
                             (sum2 - sum*sum).sqrt()
                         }
        )
    }
    fn std_mean() {unimplemented!();}
    //fn sum(&self, dim: usize, keepdim: bool) -> Self::TensorType {}
    /// Returns the sum of all elements.
    /// ```
    /// # use auto_diff::tensor::gen_tensor::*;
    /// # use crate::auto_diff::tensor::reduction::ReduceTensor;
    /// let m1 = GenTensor::<f64>::new_raw(&vec![1.,2.,3.,4.,], &vec![2,2]);
    /// assert_eq!(m1.sum(None, false).get_scale(), 10.);
    /// ```
    fn sum(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T> {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let mut sum = T::zero();
                             for i in x {
                                 sum = sum + *i;
                             }
                             sum
                         }
        )
    }
    fn unique(){unimplemented!();}
    fn unique_consecutive() {unimplemented!();}
    fn var(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T> {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let n = x.len();
                             let mut sum = T::zero();
                             let mut sum2 = T::zero();
                             for i in x {
                                 sum = sum + *i;
                                 sum2 = sum2 + *i*(*i);
                             }
                             let sum2 = sum2 / T::from(n).expect("");
                             let sum = sum / T::from(n).expect("");
                             sum2 - sum*sum
                         }
        )
    }

    fn var_mean() {unimplemented!();}

    fn max(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let mut max = x[0];
                             for i in x {
                                 if max < *i {
                                     max = *i;
                                 }
                             }
                             max
                         }
        )
    }
    fn min(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType {
        self._iter_patch(dim, keep_dim,
                         |x| {
                             let mut min = x[0];
                             for i in x {
                                 if min < *i {
                                     min = *i;
                                 }
                             }
                             min
                         }
        )
    }
}

#[cfg(test)]
mod tests {
    use crate::tensor::gen_tensor::GenTensor;
    use super::*;

    #[test]
    fn argmax() {
        let a = GenTensor::<f32>::new_raw(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = a.argmax(Some(&[0]), false);
        println!("{:?}", b);
        assert_eq!(b, GenTensor::<f32>::new_raw(&[2., 2.,], &[1, 2]));

        let b = a.argmax(Some(&[1]), false);
        println!("{:?}", b);
        assert_eq!(b, GenTensor::<f32>::new_raw(&[1., 1., 1.,], &[3, 1]));
    }

    #[test]
    fn argmin() {
        let a = GenTensor::<f32>::new_raw(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = a.argmin(Some(&[0]), false);
        println!("{:?}", b);
        assert_eq!(b, GenTensor::<f32>::new_raw(&[0., 0.,], &[1, 2]));

        let b = a.argmin(Some(&[1]), false);
        println!("{:?}", b);
        assert_eq!(b, GenTensor::<f32>::new_raw(&[0., 0., 0.,], &[3, 1]));
    }

    #[test]
    fn logsumexp() {
        let a = GenTensor::<f32>::new_raw(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = a.logsumexp(Some(&[1]), false);
        assert_eq!(b, GenTensor::<f32>::new_raw(&vec![2.3132617, 4.3132615, 6.3132615], &vec![3]));
    }

    #[test]
    fn mean() {
        let a = GenTensor::<f32>::fill(1., &vec![3, 4, 3]);
        let b = a.mean(Some(&[1]), false);
        assert_eq!(*b.size(), vec![3, 3]);
        assert_eq!(b.numel(), 9);
        //println!("{}", b);
        let c = a.mean(Some(&[1]), true);
        assert_eq!(*c.size(), vec![3, 1, 3]);
        assert_eq!(c.numel(), 9);
        //println!("{}", c);
    }

    #[test]
    fn var() {
        let a = GenTensor::<f32>::new_raw(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = a.var(Some(&[0]), false);
        assert_eq!(*b.size(), vec![2]);
        assert_eq!(b.numel(), 2);
        assert_eq!(b, GenTensor::<f32>::new_raw(&vec![2.666667, 2.666666], &vec![2]));
        //println!("{}", b);
        let c = a.var(Some(&[1]), true);
        assert_eq!(*c.size(), vec![3, 1]);
        assert_eq!(c.numel(), 3);
        assert_eq!(c, GenTensor::<f32>::new_raw(&vec![0.25, 0.25, 0.25], &vec![3, 1]));
        //println!("{}", c);
    }

    #[test]
    fn std() {
        let a = GenTensor::<f32>::new_raw(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = a.std(Some(&[0]), false);
        assert_eq!(*b.size(), vec![2]);
        assert_eq!(b.numel(), 2);
        assert_eq!(b, GenTensor::<f32>::new_raw(&vec![1.6329932, 1.632993], &vec![2]));
        //println!("{}", b);
        let c = a.std(Some(&[1]), true);
        assert_eq!(*c.size(), vec![3, 1]);
        assert_eq!(c.numel(), 3);
        assert_eq!(c, GenTensor::<f32>::new_raw(&vec![0.5, 0.5, 0.5], &vec![3, 1]));
        //println!("{}", c);
    }
}