1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
//! 
//! A general tensor type.
//! 

// extern crate ndarray;
// Default value type is f32.
// Right dimension of the tensor changes fastest.
use std::rc::Rc;
use std::cell::RefCell;
//use std::ops::Index;

use std::fmt;

pub mod gen_tensor;
pub mod typed_tensor;
pub mod compare_tensor;
pub mod index_slicing;
pub mod convolution;
pub mod reduction;

use typed_tensor::TypedTensor;
use gen_tensor::GenTensor;
use crate::op::PaddingMode;

macro_rules! tensor_method {
    ($a:ident) => {
        pub fn $a(&self, o: &Tensor) -> Tensor {
            Tensor {
                v: Rc::new(RefCell::new(self.v.borrow().$a(&o.v.borrow()))),
            }
        }
    }
}

macro_rules! tensor_method_single_same_return {
    ($a:ident, $b:ty) => {
        pub fn $a(&self) -> $b {
            self.v.borrow().$a()
        }
    }
}

macro_rules! tensor_method_single_tensor_return {
    ($a:ident) => {
        pub fn $a(&self) -> Tensor {
            Tensor {
                v: Rc::new(RefCell::new(self.v.borrow().$a())),
            }
        }
    }
}



pub struct Tensor {
    v: Rc<RefCell<TypedTensor>>,
}
impl Tensor {
    pub fn new() -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(TypedTensor::new())),
        }
    }

    pub fn index2dimpos(&self, index: usize) -> Vec::<usize> {
        self.v.borrow().index2dimpos(index)
    }
    pub fn dimpos2index(&self, dimpos: &[usize]) -> usize {
        self.v.borrow().dimpos2index(dimpos)
    }
    
    pub fn is_empty() -> bool {
        unimplemented!();
    }

    pub fn size(&self) -> Vec<usize> {
        self.v.borrow().size().clone()
    }
    tensor_method_single_same_return!(numel, usize);

    pub fn get_scale_f32(&self) -> f32 {
        self.v.borrow().get_scale_f32()
    }

    tensor_method_single_tensor_return!(get_n);
    tensor_method_single_tensor_return!(get_c);
    tensor_method_single_tensor_return!(get_d);
    tensor_method_single_tensor_return!(get_h);
    tensor_method_single_tensor_return!(get_w);
    tensor_method_single_tensor_return!(numel_tensor);

    pub fn get_patch(&self, range: &[(usize, usize)], step: Option<&[usize]>) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().get_patch(range, step)))
        }
    }

    pub fn same_shape(&self, o: &Tensor) -> bool {
        let a = self.size();
        let b = o.size();
        a == b
    }


    pub fn from_vec_usize(input: &[usize], dim: &[usize]) -> Tensor {
        let data: Vec<f32> = input.iter().map(|x| *x as f32).collect();
        Self::from_vec_f32(&data, dim)
    }
    
    /// Create a tensor from a Vec,
    /// ```
    /// # use auto_diff::tensor::*;
    /// let t1 = Tensor::from_vec_f32(&vec![0., 1., 2., 4.,], &vec![2,2]);
    /// ```
    pub fn from_vec_f32(input: &[f32], dim: &[usize]) -> Tensor {
        let data = input.to_vec();
        let idim = dim.to_vec();

        Tensor {
            //v: Rc::new(RefCell::new(TypedTensor::Typef32(GenTensor { d: data, dim: idim }))),
            v: Rc::new(RefCell::new(TypedTensor::Typef32(GenTensor::new_raw(&data, &idim) ))),
        }
    }
    /// return the internal buffer
    /// May fail if the underlying data is f64
    pub fn get_raw_f32(&self) -> Vec<f32> {
        self.v.borrow().get_raw_f32()
    }
    pub fn from_vec_f64(input: &[f64], dim: &[usize]) -> Tensor {
        let data = input.to_vec();
        let idim = dim.to_vec();

        Tensor {
            //v: Rc::new(RefCell::new(TypedTensor::Typef32(GenTensor { d: data, dim: idim }))),
            v: Rc::new(RefCell::new(TypedTensor::Typef64(GenTensor::new_raw(&data, &idim) ))),
        }
    }
    /// return the internal buffer
    /// May fail if the underlying data is f32
    pub fn get_raw_f64(&self) -> Vec<f64> {
        self.v.borrow().get_raw_f64()
    }

    /// try convert to Vec<u8>, value should be between 0, 255
    pub fn get_u8(&self) -> Option<Vec<u8>> {
        self.v.borrow().get_u8()
    }

    
    pub fn from_record(&self, row: usize, record: &[f32]) -> Result<(), ()> {
        self.v.borrow_mut().from_record(row, record)
    }
    pub fn get_f32(&self, o: &[usize]) -> f32 {
        self.v.borrow().get_f32(o)
    }
    pub fn set_f32(&mut self, o: &[usize], v: f32) {
        self.v.borrow_mut().set_f32(o, v);
    }

    pub fn swap(&self, o: Tensor) {
        self.v.swap(&o.v);
    }
    
    /// Returns a tensor of size size filled with fill_value.
    pub fn fill(size: &[usize], fill_value: f32) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(TypedTensor::fill(size, fill_value))),
        }
    }
    // zeros
    pub fn zeros(dim: &[usize]) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(TypedTensor::zeros(dim))),
        }
    }
    // zeros_like
    tensor_method_single_tensor_return!(zeros_like);
    // ones
    pub fn ones(dim: &[usize]) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(TypedTensor::ones(dim))),
        }
    }
    // ones_like
    tensor_method_single_tensor_return!(ones_like);
    // range
    pub fn range(start: f32, end: f32, step: Option<f32>) -> Tensor {
        let real_step;
        if let Some(v) = step {
            real_step = v;
        } else {
            real_step = 1.;
        }

        let mut value = start;
        let mut index = 0;
        let mut data = Vec::new();
        while value <= end {
            value += real_step;
            data.push(value);
            index += 1;
        }
        
        Tensor::from_vec_f32(&data, &vec![index])
    }
    // linspace
    pub fn linspace(start: f32, end: f32, steps: usize) -> Tensor {
        let real_step = (end-start)/(steps as f32);

        let mut value = start;
        let mut index = 0;
        let mut data = Vec::new();
        while value <= end {
            value += real_step;
            data.push(value);
            index += 1;
        }
        
        Tensor::from_vec_f32(&data, &vec![index])
    }
    // logspace
    pub fn logspace(start: f32, end: f32, steps: usize, base: f32) -> Tensor {
        let linspace_data = Tensor::linspace(start, end, steps);
        let mut ret_data = Vec::new();
        for i in 0..linspace_data.numel() {
            ret_data.push(base.powf(linspace_data.get_f32(&vec![i])));
        }
        Tensor::from_vec_f32(&ret_data, &vec![ret_data.len()])
    }
    // eye
    pub fn eye(n: usize, m: usize) -> Tensor {
        let ret = Tensor::empty(&vec![n, m]);
        for i in 0..n.min(m) {
            ret.v.borrow_mut().set_f32(&vec![i, i], 1.);
        }
        ret
    }
    // empty
    pub fn empty(shape: &[usize]) -> Tensor {
        for i in shape {
            if *i == 0 {
                println!("");
            }
        }
        Tensor {
            v: Rc::new(RefCell::new(TypedTensor::empty(shape))),
        }
    }

    
    // Indexing, Slicing, Joining, Mutating Ops
    pub fn cat(&self, tensors: &[&Tensor], dim: usize) -> Tensor {
        let mut concrete_tensor = Vec::new();
        
        for i in tensors {
            concrete_tensor.push(i.v.borrow().clone());
        }
        let mut converted_tensor = Vec::new();
        for i in &concrete_tensor {
            converted_tensor.push(i);
        }
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().cat(&converted_tensor[..], dim))),
        }
    }
    pub fn chunk() {
        unimplemented!();
    }
    pub fn gather(&self, dim: usize, index: &Tensor) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().gather(dim, &index.v.borrow()))),
        }
    }
    pub fn index_select(&self, dim: usize, index: &Tensor) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().index_select(dim, &index.v.borrow()))),
        }
    }
    pub fn masked_select() {
        unimplemented!();
    }
    pub fn narrow() {
        unimplemented!();
    }
    pub fn nonzero() {
        unimplemented!();
    }
    pub fn reshape(&self, new_shape: &[usize]) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().reshape(new_shape))),
        }
    }
    pub fn split(&self, sections: &[usize], dim: usize) -> Vec<Tensor> {
        let typts = self.v.borrow().split(sections, dim);
        let mut ret = Vec::new();
        for i in typts {
            ret.push(Tensor {
                v: Rc::new(RefCell::new(i)),
            });
        }
        ret
    }
    pub fn squeeze(&self, dim: Option<usize>) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().squeeze(dim))),
        }
    }
    pub fn stack() {
        unimplemented!();
    }
    pub fn t() {
        unimplemented!();
    }
    pub fn take() {
        unimplemented!();
    }
    pub fn transpose() {
        unimplemented!();
    }
    pub fn unbind() {
        unimplemented!();
    }

    pub fn permute(&self, dim: &[usize]) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().permute(dim))),
        }
    }
    
    /// Returns a new tensor with a dimension of size one inserted at the specified position.
    /// 
    /// The returned tensor shares the same underlying data with this tensor.
    ///
    /// 
    pub fn unsqueeze(&self, dim: usize) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().unsqueeze(dim))),
        }
    }
    
    //pub fn condition() {} // this is pytorch where
    pub fn conditional_select(&self, x: &Tensor, y: &Tensor) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().conditional_select(&x.v.borrow(), &y.v.borrow()))),
        }
    }
    pub fn repeat(&self, dim: &[usize]) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().repeat(dim))),
        }
    }

    
    pub fn to_f64(&mut self) {}
    pub fn to_f32(&mut self) {}

    // Pointwise Ops
    tensor_method_single_tensor_return!(abs);
    tensor_method_single_tensor_return!(acos);
    tensor_method_single_tensor_return!(asin);
    tensor_method_single_tensor_return!(atan);
    tensor_method_single_tensor_return!(ceil);
    // clamp
    tensor_method_single_tensor_return!(cos);
    tensor_method_single_tensor_return!(cosh);
    tensor_method_single_tensor_return!(exp);
    tensor_method_single_tensor_return!(expm1);
    tensor_method_single_tensor_return!(floor);
    tensor_method_single_tensor_return!(frac);
    // lerp
    pub fn lerp(&self, end: &Tensor, weight: f32) -> Tensor {
        self.add(&Tensor::fill(&self.size(), weight).mul(&end.sub(self)))
    }
    tensor_method_single_tensor_return!(log);
    tensor_method_single_tensor_return!(log10);
    tensor_method_single_tensor_return!(log1p);
    tensor_method_single_tensor_return!(log1pexp);
    tensor_method_single_tensor_return!(log2);
    tensor_method_single_tensor_return!(neg);
    // pow
    pub fn pow_f32(&self, n: f32) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().pow_f32(n))),
        }
    }
    tensor_method_single_tensor_return!(reciprocal);
    tensor_method_single_tensor_return!(round);
    tensor_method_single_tensor_return!(rsqrt);
    tensor_method_single_tensor_return!(sigmoid);
    tensor_method_single_tensor_return!(sign);
    tensor_method_single_tensor_return!(sin);
    tensor_method_single_tensor_return!(sinh);
    tensor_method_single_tensor_return!(sqrt);
    tensor_method_single_tensor_return!(square);
    tensor_method_single_tensor_return!(tan);
    tensor_method_single_tensor_return!(tanh);
    tensor_method_single_tensor_return!(trunc);

    tensor_method!(add);
    tensor_method!(sub);
    tensor_method!(mul);
    tensor_method!(div);

    tensor_method!(mm);
    tensor_method!(matmul);
    pub fn outer(&self, o: &Tensor, avg: Option<bool>) -> Tensor {
            Tensor {
                v: Rc::new(RefCell::new(self.v.borrow().outer(&o.v.borrow(), avg))),
            }
        }

    // reduction ops
    pub fn argmax(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().argmax(dim, keepdim))),
        }
    }
    pub fn argmin(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().argmin(dim, keepdim))),
        }
    }
    //tensor_method_single_tensor_return!(dist);
    pub fn logsumexp(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().logsumexp(dim, keepdim))),
        }
    }
    pub fn mean(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().mean(dim, keepdim))),
        }
    }
    
    //tensor_method_single_tensor_return!(median);
    //tensor_method_single_tensor_return!(mode);
    //tensor_method_single_tensor_return!(norm);
    //tensor_method_single_tensor_return!(prod);
    pub fn std(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().std(dim, keepdim))),
        }
    }
    //tensor_method_single_tensor_return!(std_mean);
    pub fn sum(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().sum(dim, keepdim))),
        }
    }
    //tensor_method_single_tensor_return!(unique);
    //tensor_method_single_tensor_return!(unique_consecutive);
    pub fn var(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().var(dim, keepdim))),
        }
    }
    //tensor_method_single_tensor_return!(var_mean);
    pub fn max(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().max(dim, keepdim))),
        }
    }
    pub fn min(&self, dim: Option<&[usize]>, keepdim: bool) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().min(dim, keepdim))),
        }
    }

    pub fn normalize(&self, mean: &[f32], std: &[f32]) -> Tensor {
        if self.size().len() != 2 {
            panic!("fn normalize is for two-dimensional data.");
        }
        let width = self.size()[1];
        if width != mean.len() {
            panic!("input mean has a different size. {}, {}", width, mean.len());
        }
        if width != std.len() {
            panic!("input std has a different size. {}, {}", width, std.len());
        }
        
        let data_mean = self.mean(Some(&[0]), false);
        let tmp1 = self.sub(&data_mean).add(&Tensor::from_vec_f32(mean, &vec![width]));
        //let tmp1 = Tensor::from_vec_f32(mean, &vec![width]).sub(&data_mean).add(self);

        let data_std = tmp1.std(Some(&[0]), false);
        //println!("data_std: {:?}, tmp1: {:?}", data_std, tmp1);
        let tmp2 = tmp1.div(&data_std);
        tmp2
    }
    pub fn normalize_unit(&self) -> Tensor {
        if self.size().len() != 2 {
            panic!("fn normalize is for two-dimensional data.");
        }
        self.normalize(&vec![0. ; self.size()[self.size().len()-1]],
                       &vec![1. ; self.size()[self.size().len()-1]])
    }


    // Comparison Ops
    tensor_method!(all_close);
    tensor_method!(eq_t);
    tensor_method!(ge);
    tensor_method!(gt);
    tensor_method!(le);
    tensor_method!(lt);
    tensor_method!(max_pair);
    tensor_method!(min_pair);
    tensor_method!(ne);

    // conv ops
    pub fn conv2d(&self, o: &Tensor,
                  stride: (usize, usize),
                  padding: (usize, usize),
                  dilation: (usize, usize),
                  padding_mode: PaddingMode
    ) -> Tensor {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().conv2d(&o.v.borrow(), stride, padding, dilation, padding_mode))),
        }
    }
    pub fn conv2d_grad(&self, o: &Tensor,
                       stride: (usize, usize),
                       padding: (usize, usize),
                       dilation: (usize, usize),
                       padding_mode: PaddingMode,
                       output_grad: &Tensor
    ) -> (Tensor, Tensor) {
        let (r1, r2) = self.v.borrow().conv2d_grad(&o.v.borrow(), stride, padding, dilation, padding_mode, &output_grad.v.borrow());
        (Tensor { v: Rc::new(RefCell::new(r1))},
         Tensor { v: Rc::new(RefCell::new(r2))},
        )
    }
}

impl fmt::Display for Tensor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.v.borrow())
    }
}
impl fmt::Debug for Tensor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "({}, )", self.v.borrow())
    }
}
impl PartialEq for Tensor {
    fn eq(&self, other: &Self) -> bool {
        self.v.eq(&other.v)
    }
}
impl Eq for Tensor {}

impl Clone for Tensor {
    fn clone(&self) -> Self {
        Tensor {
            v: Rc::new(RefCell::new(self.v.borrow().clone())),
        }
    }
}


// index and slicing
//pub struct TensorView {
//    dim_index: usize,
//}
//
//impl Index<usize> for Tensor {
//    type Output = TensorView;
//
//    fn index(&self, dim_index: usize) -> &Self::Output {
//        TensorView {
//            dim_index: dim_index,
//        }
//    }
//}


#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn tensor_equal() {
        let a = Tensor::from_vec_f32(&vec![1., 2., 3., ], &vec![3, 1]);
        let b = Tensor::from_vec_f32(&vec![1., 2., 3., ], &vec![3, 1]);
        assert_eq!(a.same_shape(&b), true);

        let a = Tensor::from_vec_f32(&vec![1., 2., 3., ], &vec![1, 3]);
        let b = Tensor::from_vec_f32(&vec![1., 2., 3., ], &vec![3, 1]);
        assert_eq!(a.same_shape(&b), false);
    }

    #[test]
    fn normalize() {
        let a = Tensor::from_vec_f32(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = a.normalize_unit();
        assert_eq!(b, Tensor::from_vec_f32(&vec![-1.2247448, -1.2247448, 0.,0., 1.2247448, 1.2247448], &vec![3, 2]));
    }
}