1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
use crate::tensor::Tensor;
use super::OpTrait;


//
// Common Cost function
//
pub enum Reduction{
    None,
    Mean,
    Sum,
}

// L1Loss
// MSELoss
/// MSELoss
/// The left-most dimension is the N.
pub struct MSELoss {
 }
impl MSELoss {
    pub fn new() -> MSELoss {
        MSELoss {
         }
    }
}
impl OpTrait for MSELoss {
    fn get_name(&self) -> String {
        "MSE".to_string()
    }
    fn get_input_size(&self) -> usize {
        2
    }
    fn get_output_size(&self) -> usize {
        1
    }
    fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
        // TODO: wait for Tensor to have lazy evaluation for elemwise operation.
        let tmp = input[0].sub(input[1]);
        let tmp2 = tmp.mul(&tmp);
        let tmp3 = tmp2.sum(None, false);
        let ret = tmp3.div(&input[0].get_n().mul(&input[0].get_c()));
        output[0].swap(ret);
    }
    fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
        
        if input.len() < 2 {
            panic!("MSELoss expect two input, get {}", input.len());
        }
        if input_grad.len() < 2 {
            panic!("MSELoss expect two input gradient tensor, get {}", input_grad.len());
        }
        if output_grad.len() < 1 {
            panic!("MSELoss expect one output gradient, get {}", output_grad.len());
        }
        if ! input[0].same_shape(input[1]) {
            panic!("MSELoss expect two input have the same shape, get {:?}, {:?}", input[0].size(), input[1].size());
        }


        let tmp1 = input[0].sub(input[1]);
        let tmp2 = tmp1.div(&input[0].numel_tensor());
        let tmp3 = tmp2.mul(output_grad[0]);
        input_grad[0].swap(tmp3);

        let tmp1 = input[1].sub(input[0]);
        let tmp2 = tmp1.div(&input[0].numel_tensor());
        let tmp3 = tmp2.mul(output_grad[0]);
        input_grad[1].swap(tmp3);
    }

    fn get_values(&self) -> Vec<&Tensor> {
        Vec::new()
    }
    fn set_values(&self, _v: &[Tensor]) {
    }

    fn get_grads(&self) -> Vec<&Tensor> {
        Vec::new()
    }
}


// CrossEntropyLoss
pub struct CrossEntropyLoss {}
impl CrossEntropyLoss {
    pub fn new() -> CrossEntropyLoss {
        CrossEntropyLoss {}
    }
}
impl OpTrait for CrossEntropyLoss {
    fn get_name(&self) -> String {
        "CrossEntropyLoss".to_string()
    }
    fn get_input_size(&self) -> usize {
        2
    }
    fn get_output_size(&self) -> usize {
        1
    }
    /// The first is the prediction, the second input is the label
    /// ORDER IS IMPORTANT, SECOND ARGUMENT WON'T GET GRADEINT.
    fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
        if input.len() < 2 {
            panic!("{} expect two input, get {}", self.get_name(), input.len());
        }
        if input[0].size().len() != (input[1].size().len()+1) {
            panic!("{} expect dim+1 and dim, get {}, {}", self.get_name(), input[0].size().len(), input[1].size().len());
        }

        let class_index = input[1].unsqueeze(1);
        let class_score = input[0].gather(1, &class_index);
        let val = class_score.neg().add(&input[0].logsumexp(Some(&[1]), true)).mean(None, false);
        output[0].swap(val);
    }
    
    /// Given the forward input value and backward output_grad,
    /// Update weight gradient.
    /// return backward input gradeint.
    fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {

        // exchange sample size and class
        let mut dim_order: Vec<usize> = (0..input[0].size().len()).collect();
        dim_order[0] = 1;
        dim_order[1] = 0;

        // - max and use CNddd format
        let smaller = input[0].permute(&dim_order);
        let max = smaller.max(Some(&[0]), false);
        let smaller = smaller.sub(&max);
        let new_label = input[1].unsqueeze(0);

        // get sum(exp(x_i))
        let mut class_dim = vec![1; smaller.size().len()];
        class_dim[0] = smaller.size()[0];
        let denominator = smaller.exp().sum(Some(&[0]), true).repeat(&class_dim);

        // repeated class label for each class
        let mut tmp_dim = vec![1; smaller.size().len()]; // Nddd
        tmp_dim[0] = smaller.size()[0]; // CNddd
        let repeated_label = new_label.repeat(&tmp_dim); // CNddd

        // repeated class label for each sample
        let class_seq: Vec<f32> = (0..smaller.size()[0]).map(|x| x as f32).collect();
        let class_label = Tensor::from_vec_f32(&class_seq, &class_dim);
        let mut repeat_dim = smaller.size();
        repeat_dim[0] = 1;
        let repeated_class = class_label.repeat(&repeat_dim);

        let pick = repeated_label.eq_t(&repeated_class);
        let smaller_exp = smaller.exp();
        let numerator = pick.conditional_select(&smaller_exp.sub(&denominator), &smaller_exp);

        let grad = numerator.div(&denominator).div(&Tensor::from_vec_f32(&[input[1].numel() as f32], &[1]));
        let grad = grad.permute(&dim_order);
        input_grad[0].swap(grad.mul(output_grad[0]));
    }

    /// access weight values
    fn get_values(&self) -> Vec<&Tensor> {
        Vec::new()
    }
    fn set_values(&self, _v: &[Tensor]) {
    }
    /// access gradient values
    fn get_grads(&self) -> Vec<&Tensor> {
        Vec::new()
    }
}
// CTCLoss
// NLLLoss
// PoissonNLLLoss
// KLDivLoss
// BCELoss

/// This loss combines a Sigmoid layer and the BCELoss in one single class.
/// This version is more numerically stable than using a plain Sigmoid followed
/// by a BCELoss as, by combining the operations into one layer,
/// we take advantage of the log-sum-exp trick for numerical stability.
///
/// -y log (1/(1 + exp(-x))) - (1-y) log(1 - 1/(1 + exp(-x)))
/// 
/// Prediction comes first, label comes second.
pub struct BCEWithLogitsLoss {
    
}
impl BCEWithLogitsLoss {
    pub fn new() -> BCEWithLogitsLoss {
        BCEWithLogitsLoss {
        }
    }
}
impl OpTrait for BCEWithLogitsLoss {
    
    fn get_name(&self) -> String {
        "BCEWithLogitsLoss".to_string()
    }
    fn get_input_size(&self) -> usize {
        2
    }
    fn get_output_size(&self) -> usize {
        1
    }
    /// The first is the prediction, the second input is the label
    /// ORDER IS IMPORTANT, SECOND ARGUMENT WON'T GET GRADEINT.
    fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
        if input.len() < 2 {
            panic!("{} expect two input, get {}", self.get_name(), input.len());
        }
        let ret_all = input[1].mul(&input[0].neg().log1pexp())
            .add(&(input[1].neg().add(&input[1].ones_like())).mul(&input[0].log1pexp()));
        let tmp3 = ret_all.sum(None, false);
        let ret = tmp3.div(&input[0].get_n().mul(&input[0].get_c()));
        output[0].swap(ret);
    }
    
    /// Given the forward input value and backward output_grad,
    /// Update weight gradient.
    /// return backward input gradeint.
    fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
        // ddx y log (1 + exp(-x)) = -y  / (1 + exp(x))
        // ddx (1-y) log (1 + exp(x)) = (1-y) / (1 + exp(-x))
        let ones = Tensor::ones_like(&input[0]);
        let tmp1 = input[1].neg().div(&input[0].exp().add(&ones));
        let tmp2 = input[1].neg().add(&ones).div(&input[0].neg().exp().add(&ones));
        let tmp3 = tmp1.add(&tmp2);
        let tmp4 = tmp3.mul(output_grad[0]);
        
        let zeros = Tensor::zeros_like(input[0]);
        input_grad[0].swap(tmp4);
        input_grad[1].swap(zeros);
    }

    /// access weight values
    fn get_values(&self) -> Vec<&Tensor> {
        Vec::new()
    }
    
    fn set_values(&self, _v: &[Tensor]) {
        
    }
    
    /// access gradient values
    fn get_grads(&self) -> Vec<&Tensor> {
        Vec::new()
    }
}

// MarginRankingLoss
// HingeEmbeddingLoss
// MultiLabelMarginLoss
// SmoothL1Loss
// SoftMarginLoss
// MultiLabelSoftMarginLoss
// CosineEmbeddingLoss
// MultiMarginLoss
// TripletMarginLoss


#[cfg(test)]
mod tests {
    use super::*;
    use crate::op::_gradient_checker;

    #[test]
    fn test_CrossEntropyLoss() {
        let a = Tensor::from_vec_f32(&vec![1., 2., 3., 4., 5., 6., ], &vec![3, 2]);
        let b = Tensor::from_vec_f32(&vec![0., 0., 1., ], &vec![3]);
        let mut c = CrossEntropyLoss::new();
        let d = Tensor::new();
        c.apply(&[&a, &b], &[&d]);
        assert_eq!(d.get_scale_f32(), 0.97992826);

        let good_grad = _gradient_checker(&mut c, &[&a, &b], Some(&[true, false]), None, None);
        assert_eq!(good_grad, true);
    }
}