1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
use std::collections::{BTreeSet, BTreeMap};
use crate::collection::generational_index::*;
use crate::collection::graph::Graph;
use crate::tensor::Tensor;
use crate::op::*;
use crate::var::*;
pub struct Net {
data: GenIndex<Tensor>,
ops: GenIndex<Op>,
funcs: BTreeMap<NetIndex, Vec<NetIndex>>,
set_mark: BTreeSet<NetIndex>,
graph: Graph,
data_grad: BTreeMap<NetIndex, Tensor>,
}
impl Net {
pub fn new() -> Net {
Net {
data: GenIndex::new(),
ops: GenIndex::new(),
funcs: BTreeMap::new(),
set_mark: BTreeSet::new(),
graph: Graph::new(),
data_grad: BTreeMap::new(),
}
}
pub fn get_data(&self) -> &GenIndex<Tensor> {
&self.data
}
pub fn get_data_mut(&mut self) -> &mut GenIndex<Tensor> {
&mut self.data
}
pub fn get_op(&self, func: &Func) -> Option<&Op> {
self.ops.get(func.get_id())
}
pub fn is_dangling_var(&self, var: &Var) -> Result<bool, ()> {
if !self.data.contains(var.get_id()) {
Err(())
} else {
if self.graph.list_as_input(var.get_id()).expect("").len() == 0 &&
self.graph.list_as_output(var.get_id()).expect("").len() == 0 {
Ok(true)
} else {
Ok(false)
}
}
}
pub fn get_grad(&self) -> &BTreeMap<NetIndex, Tensor> {
&self.data_grad
}
pub fn get_func_output(&self, func: &Func) -> Option<NetIndex> {
let outputs = self.graph.list_output(func.get_id()).ok()?;
if outputs.len() > 0 {
Some(outputs[0])
} else {
None
}
}
pub fn init_var(&mut self) -> NetIndex {
let id = self.data.insert(Tensor::new());
self.graph.add_data(&id).expect("");
id
}
pub fn del_var(&mut self, var: &Var) {
self.data.remove(var.get_id()).expect("");
self.graph.del_data(var.get_id()).expect("");
}
pub fn init_op(&mut self, op: Op) -> NetIndex {
let id = self.ops.insert(op.clone());
self.graph.add_op(&id).expect("");
self.funcs.insert(id.clone(), Vec::new());
id
}
pub fn init_func(&mut self, funcs: &[NetIndex]) -> NetIndex {
let id = self.ops.insert(Op::nop());
self.graph.add_op(&id).expect("");
self.funcs.insert(id.clone(), funcs.to_vec());
id
}
pub fn del_func_or_op(&mut self, func: &Func) {
self.ops.remove(func.get_id()).expect("");
self.graph.del_op(func.get_id()).expect("");
}
pub fn decouple_input(&mut self, func: &Func) -> Vec<NetIndex> {
let mut decoupled_inputs = Vec::new();
for i in &self.graph.list_input(func.get_id()).expect("") {
self.graph.decouple_data_func(i, func.get_id()).expect("");
decoupled_inputs.push(i.clone());
}
decoupled_inputs
}
pub fn get_sub_func(&self, func: NetIndex) -> Vec<NetIndex> {
self.funcs.get(&func).expect("").to_vec()
}
pub fn is_composed(&self, func: &Func) -> Result<bool, ()> {
if self.ops.contains(func.get_id()) {
if self.funcs.get(func.get_id()).expect("").len() > 0 {
Ok(true)
} else {
Ok(false)
}
} else {
Err(())
}
}
pub fn connect(&mut self, input: &[NetIndex], op: Op, output: &[NetIndex]) {
println!("Deprecated! Graph::connect");
let opid = self.init_op(op);
self.graph.connect(input, output, &opid).expect("");
}
pub fn connect2(&mut self, input: &[&Var], func: &Func, output: &[&Var]) {
let mut input_ids = Vec::with_capacity(input.len());
for i in input {
input_ids.push(i.get_id().clone());
}
let mut output_ids = Vec::with_capacity(output.len());
for i in output {
output_ids.push(i.get_id().clone());
}
self.graph.connect(&input_ids, &output_ids, func.get_id()).expect("");
}
pub fn set_mark(&mut self, did: &NetIndex) {
self.set_mark.insert(*did);
}
pub fn unset_mark(&mut self, did: &NetIndex) {
self.set_mark.remove(did);
}
pub fn eval(&mut self) -> Result<(), BTreeSet<NetIndex>> {
println!("Deprecated! no more whole network forward pass.");
let mut all_input = Vec::new();
for i in &self.set_mark {
all_input.push(i.clone());
}
self.graph
.walk(
&all_input[..],
true,
|input, output, op| {
let mut inputs: Vec<&Tensor> = Vec::new();
for input_id in input {
let a = self.data.get(input_id).expect("");
inputs.push(a);
}
let mut outputs: Vec<&Tensor> = Vec::new();
for output_id in output {
let a = self.data.get(output_id).expect("");
outputs.push(a);
}
self.ops
.get(op)
.expect("")
.apply(&inputs, &outputs);
}
)?;
Ok(())
}
pub fn eval_op(&self, input: &[&Var], func: &Func, output: &[&Var]) {
let mut inputs: Vec<&Tensor> = Vec::new();
for input_var in input {
let a = self.data.get(input_var.get_id()).expect("");
inputs.push(a);
}
let mut outputs: Vec<&Tensor> = Vec::new();
for output_var in output {
let a = self.data.get(output_var.get_id()).expect("");
outputs.push(a);
}
self.ops
.get(func.get_id())
.expect("")
.apply(&inputs, &outputs);
}
pub fn bptt_scale(&mut self, r: f32) {
let output = self.graph.get_output_cache();
let mut output_grad = BTreeMap::new();
for i in &output {
output_grad.insert(i.clone(),
Tensor::fill(&self.data.get(i).expect("").size(),
r));
}
self.bptt(&output_grad);
}
pub fn bptt(&mut self, output_grad: &BTreeMap<NetIndex, Tensor>) {
let mut output = Vec::new();
self.data_grad.clear();
for (k, v) in output_grad {
output.push(k.clone());
self.data_grad.insert(k.clone(), v.clone());
}
for i in self.graph.list_data() {
if ! self.data_grad.contains_key(&i) {
self.data_grad.insert(i, Tensor::new());
}
}
self.graph
.walk(
&output[..],
false,
|output_grads, input_grads, op| {
let mut inputs: Vec<&Tensor> = Vec::new();
for input_id in input_grads {
let a = self.data.get(input_id).expect("");
inputs.push(a);
}
let mut output_grad: Vec<&Tensor> = Vec::new();
for output_id in output_grads {
let a = self.data_grad.get(output_id).expect("");
output_grad.push(a);
}
let mut input_grad: Vec<&Tensor> = Vec::new();
for input_id in input_grads {
let a = self.data_grad.get(input_id).expect("");
input_grad.push(a);
}
self.ops
.get(op)
.expect("")
.grad(&inputs, &output_grad, &input_grad);
}
).expect("");
}
pub fn visit_op<F>(&mut self, closure: F,
allow: Option<Vec<NetIndex>>,
skip: Option<Vec<NetIndex>>)
where F: Fn(&Op) {
let mut allow_list = Vec::new();
let mut skip_list = Vec::new();
if allow.is_some() {
allow_list = allow.unwrap();
}
if skip.is_some() {
skip_list = skip.unwrap();
}
for i in self.graph.list_op() {
if (allow_list.len() == 0 && skip_list.len() == 0) ||
(allow_list.len() != 0 && allow_list.contains(&i)) ||
(skip_list.len() != 0 && !skip_list.contains(&i) ) {
closure(self.ops.get(&i).expect(""));
}
}
}
pub fn visit_data<F>(&mut self, closure: F)
where F: Fn(NetIndex, &Tensor) {
for i in self.graph.list_data() {
closure(i, self.data.get(&i).expect(""));
}
}
}