1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use crate::tensor::Tensor;
use super::OpTrait;


//
// Common Cost function
//
pub enum Reduction{
    None,
    Mean,
    Sum,
}

// L1Loss
// MSELoss
/// MSELoss
/// The left-most dimension is the N.
pub struct MSELoss {
 }
impl MSELoss {
    pub fn new() -> MSELoss {
        MSELoss {
         }
    }
}
impl OpTrait for MSELoss {
    fn get_name(&self) -> String {
        "MSE".to_string()
    }
    fn get_input_size(&self) -> usize {
        2
    }
    fn get_output_size(&self) -> usize {
        1
    }
    fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
        // TODO: wait for Tensor to have lazy evaluation for elemwise operation.
        let tmp = input[0].sub(input[1]);
        let tmp2 = tmp.mul(&tmp);
        let tmp3 = tmp2.sum();
        let ret = tmp3.div(&input[0].get_n().mul(&input[0].get_c()));
        output[0].swap(ret);
    }
    fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
        
        if input.len() < 2 {
            panic!("MSELoss expect two input, get {}", input.len());
        }
        if input_grad.len() < 2 {
            panic!("MSELoss expect two input gradient tensor, get {}", input_grad.len());
        }
        if output_grad.len() < 1 {
            panic!("MSELoss expect one output gradient, get {}", output_grad.len());
        }
        if ! input[0].same_shape(input[1]) {
            panic!("MSELoss expect two input have the same shape, get {:?}, {:?}", input[0].size(), input[1].size());
        }


        let tmp1 = input[0].sub(input[1]);
        let tmp2 = tmp1.div(&input[0].numel_tensor());
        let tmp3 = tmp2.mul(output_grad[0]);
        input_grad[0].swap(tmp3);

        let tmp1 = input[1].sub(input[0]);
        let tmp2 = tmp1.div(&input[0].numel_tensor());
        let tmp3 = tmp2.mul(output_grad[0]);
        input_grad[1].swap(tmp3);
    }

    fn get_values(&self) -> Vec<&Tensor> {
        Vec::new()
    }
    fn set_values(&self, _v: &[Tensor]) {
    }

    fn get_grads(&self) -> Vec<&Tensor> {
        Vec::new()
    }
}


// CrossEntropyLoss
pub struct CrossEntropyLoss {}
impl CrossEntropyLoss {
    pub fn new() -> CrossEntropyLoss {
        CrossEntropyLoss {}
    }
}
impl OpTrait for CrossEntropyLoss {
        fn get_name(&self) -> String {
        "CrossEntropyLoss".to_string()
    }
    fn get_input_size(&self) -> usize {
        2
    }
    fn get_output_size(&self) -> usize {
        1
    }
    /// Forward pass
    fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
        let ret = input[0].max(&input[0].zeros_like());
        output[0].swap(ret);
    }
    
    /// Given the forward input value and backward output_grad,
    /// Update weight gradient.
    /// return backward input gradeint.
    fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
        let ret = input[0].gt(&input[0].zeros_like());
        input_grad[0].swap(ret.mul(output_grad[0]));
    }

    /// access weight values
    fn get_values(&self) -> Vec<&Tensor> {
        Vec::new()
    }
    fn set_values(&self, _v: &[Tensor]) {
    }
    /// access gradient values
    fn get_grads(&self) -> Vec<&Tensor> {
        Vec::new()
    }
}
// CTCLoss
// NLLLoss
// PoissonNLLLoss
// KLDivLoss
// BCELoss

/// This loss combines a Sigmoid layer and the BCELoss in one single class.
/// This version is more numerically stable than using a plain Sigmoid followed
/// by a BCELoss as, by combining the operations into one layer,
/// we take advantage of the log-sum-exp trick for numerical stability.
///
/// -y log (1/(1 + exp(-x))) - (1-y) log(1 - 1/(1 + exp(-x)))
/// 
/// Prediction comes first, label comes second.
pub struct BCEWithLogitsLoss {
    
}
impl BCEWithLogitsLoss {
    pub fn new() -> BCEWithLogitsLoss {
        BCEWithLogitsLoss {
        }
    }
}
impl OpTrait for BCEWithLogitsLoss {
    
    fn get_name(&self) -> String {
        "BCEWithLogitsLoss".to_string()
    }
    fn get_input_size(&self) -> usize {
        2
    }
    fn get_output_size(&self) -> usize {
        1
    }
    /// The first is the prediction, the second input is the label
    fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
        if input.len() < 2 {
            panic!("{} expect two input, get {}", self.get_name(), input.len());
        }
        let ret_all = input[1].mul(&input[0].neg().log1pexp())
            .add(&(input[1].neg().add(&input[1].ones_like())).mul(&input[0].log1pexp()));
        let tmp3 = ret_all.sum();
        let ret = tmp3.div(&input[0].get_n().mul(&input[0].get_c()));
        output[0].swap(ret);
    }
    
    /// Given the forward input value and backward output_grad,
    /// Update weight gradient.
    /// return backward input gradeint.
    fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
        // ddx y log (1 + exp(-x)) = -y  / (1 + exp(x))
        // ddx (1-y) log (1 + exp(x)) = (1-y) / (1 + exp(-x))
        let ones = Tensor::ones_like(&input[0]);
        let tmp1 = input[1].neg().div(&input[0].exp().add(&ones));
        let tmp2 = input[1].neg().add(&ones).div(&input[0].neg().exp().add(&ones));
        let tmp3 = tmp1.add(&tmp2);
        let tmp4 = tmp3.mul(output_grad[0]);
        
        let zeros = Tensor::zeros_like(input[0]);
        input_grad[0].swap(tmp4);
        input_grad[1].swap(zeros);
    }

    /// access weight values
    fn get_values(&self) -> Vec<&Tensor> {
        Vec::new()
    }
    
    fn set_values(&self, _v: &[Tensor]) {
        
    }
    
    /// access gradient values
    fn get_grads(&self) -> Vec<&Tensor> {
        Vec::new()
    }
}

// MarginRankingLoss
// HingeEmbeddingLoss
// MultiLabelMarginLoss
// SmoothL1Loss
// SoftMarginLoss
// MultiLabelSoftMarginLoss
// CosineEmbeddingLoss
// MultiMarginLoss
// TripletMarginLoss