1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
use rand::prelude::*;
use rand_distr::{Normal, Distribution};
use super::tensor::*;
pub struct RNG {
rng: StdRng,
}
impl RNG {
pub fn new() -> RNG {
RNG {
rng: StdRng::seed_from_u64(671),
}
}
pub fn set_seed(&mut self, seed: u64) {
self.rng = StdRng::seed_from_u64(seed);
}
pub fn bernoulli() {}
pub fn cauchy() {}
pub fn exponential() {}
pub fn geometric() {}
pub fn log_normal() {}
pub fn normal(&mut self, dim: &[usize], mean: f32, std: f32) -> Tensor {
let mut elem = 1;
for i in dim {
elem *= i;
}
let mut dta = Vec::<f32>::with_capacity(elem);
let normal = Normal::new(mean, std).expect("");
for i in 0..elem {
dta.push(normal.sample(&mut self.rng));
}
Tensor::from_vec_f32(&dta, dim)
}
pub fn uniform<F>(dim: &[usize], from: F, to: F) -> Tensor
where F: num_traits::Float {
Tensor::new()
}
pub fn normal_(&mut self, o: &Tensor, mean: f32, std: f32) {
let t = self.normal(&o.size(), mean, std);
o.swap(t);
}
pub fn uniform_(&mut self, o: &Tensor, from: f32, to: f32) {
}
}