1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::tensor::Tensor;
use super::OpTrait;
pub enum Reduction{
None,
Mean,
Sum,
}
pub struct MSELoss {
reduction: Reduction,
}
impl MSELoss {
pub fn new() -> MSELoss {
MSELoss {
reduction: Reduction::None,
}
}
}
impl OpTrait for MSELoss {
fn get_name(&self) -> String {
"MSE".to_string()
}
fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
let tmp = input[0].sub(input[1]);
let tmp2 = tmp.mul(&tmp);
let tmp3 = tmp2.sum();
let ret = tmp3.div(&input[0].get_N().mul(&input[0].get_C()));
output[0].swap(ret);
}
fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
if input.len() < 2 {
panic!("MSELoss expect two input, get {}", input.len());
}
if input_grad.len() < 2 {
panic!("MSELoss expect two input gradient tensor, get {}", input_grad.len());
}
if output_grad.len() < 1 {
panic!("MSELoss expect one output gradient, get {}", output_grad.len());
}
if ! input[0].same_shape(input[1]) {
panic!("MSELoss expect two input have the same shape, get {:?}, {:?}", input[0].size(), input[1].size());
}
let tmp1 = input[0].sub(input[1]);
let tmp2 = tmp1.div(&input[0].numel_tensor());
let tmp3 = tmp2.mul(output_grad[0]);
input_grad[0].swap(tmp3);
let tmp1 = input[1].sub(input[0]);
let tmp2 = tmp1.div(&input[0].numel_tensor());
let tmp3 = tmp2.mul(output_grad[0]);
input_grad[1].swap(tmp3);
}
fn get_values(&self) -> Vec<&Tensor> {
Vec::new()
}
fn set_values(&self, v: &[Tensor]) {
}
fn get_grads(&self) -> Vec<&Tensor> {
Vec::new()
}
}
pub struct BCEWithLogitsLoss {
}
impl BCEWithLogitsLoss {
pub fn new() -> BCEWithLogitsLoss {
BCEWithLogitsLoss {
}
}
}
impl OpTrait for BCEWithLogitsLoss {
fn get_name(&self) -> String {
"BCEWithLogitsLoss".to_string()
}
fn apply(&mut self, input: &[&Tensor], output: &[&Tensor]) {
if input.len() < 2 {
panic!("{} expect two input, get {}", self.get_name(), input.len());
}
let ret = input[1].mul(&input[0].neg().log1pexp())
.add(&(input[1].neg().add(&input[1].ones_like())).mul(&input[0].log1pexp()));
output[0].swap(ret);
}
fn grad(&self, input: &[&Tensor], output_grad: &[&Tensor], input_grad: &[&Tensor]) {
}
fn get_values(&self) -> Vec<&Tensor> {
Vec::new()
}
fn set_values(&self, v: &[Tensor]) {
}
fn get_grads(&self) -> Vec<&Tensor> {
Vec::new()
}
}