1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
use std::cell::RefCell;
use std::collections::{BTreeSet, BTreeMap};
use std::fmt;
use std::rc::Rc;


use super::collection::generational_index::*;
use super::collection::graph::Graph;
use super::tensor::Tensor;
use super::op::*;


pub struct Module {
    net: Rc<RefCell<Net>>,

}

/// Network holder.
impl Module {
    /// Create an empty module.
    /// A module is mainly used to create new variables.
    pub fn new() -> Module {
        Module {
            net: Rc::new(RefCell::new(Net::new())),
        }
    }

    /// Create a new variable.
    pub fn var(&mut self) -> Var {
        let mut new_var = Var::new();

        // The following two lines need to go together.
        {
            self.net.borrow_mut().init_var(&mut new_var);
            new_var.net = Rc::clone(&self.net);
        }
        new_var
    }

    /// Try best evaluation of the computation graph.
    pub fn eval(&self) {
        self.net.borrow_mut().eval().expect("");
    }
    
    /// Same as eval
    pub fn forward(&self) { 
        self.net.borrow_mut().eval().expect("");
    }

    /// Back propagation
    pub fn backward_vector(&self, og: &BTreeMap<NetIndex, Tensor>) {
	self.net.borrow_mut().bptt(og);
    }

    /// Back propgation with a single value.
    pub fn backward(&self, og: f32) {
	self.net.borrow_mut().bptt_scale(og);
    }

    /// iterator over all data node.
    pub fn _visit_data<F>(&self, closure: F)
    where F: Fn(&Op) {
    }
    /// iterator over all op node.
    pub fn _visit_op<F>(&self, closure: F)
    where F: Fn(&Op) {
        self.net.borrow_mut().visit_op(closure);
    }
}


/// Introduce variable to the system by creating Var
pub struct Var {
    id: NetIndex,
    net: Rc<RefCell<Net>>,
}

macro_rules! var_op_method {
    ($a:ident, $b:ident) => {
        pub fn $a(&self, o: &Var) -> Var {
            let result = self.new_attached();
            self.net
                .borrow_mut()
                .connect(&vec![self.id, o.id], Op::new(Box::new($b::new())), &vec![result.id]);
            result
        }
    }
    
}

impl Var {
    pub fn new() -> Var {
        Var {
            id: NetIndex::new(0, 0),
            net: Rc::new(RefCell::new(Net::new())),
        }
    }

    pub fn new_attached(&self) -> Var {
        let mut new_var = Var::new();

        // The following two lines need to go together.
        {
            self.net.borrow_mut().init_var(&mut new_var);
            new_var.net = Rc::clone(&self.net);
        }
        new_var
    }

    pub fn _id(&self) -> &NetIndex {
        &self.id
    }

    /// Give the variable a value
    ///
    /// ```
    /// # use auto_diff::var::*;
    /// # use auto_diff::tensor::*;
    /// let mut m = Module::new();
    /// let a = m.var();
    /// a.set(Tensor::new());
    /// ```
    pub fn set(&self, v: Tensor) {
        self.net
            .borrow_mut()
            .data
            .replace(&self.id, v).expect("");

        self.net.borrow_mut().set_mark(&self.id);
    }

    /// Get the underlying tensor.
    pub fn get(&self) -> Tensor {
        self.net.borrow().data.get(&self.id).expect("").clone()
    }

    /// Get the underlying gradient tensor.
    pub fn get_grad(&self) -> Tensor {
        self.net.borrow().data_grad.get(&self.id).expect("").clone()
    }

    /// apply the var to pre-faburacated op.
    pub fn to(&self, op: &Op) -> Var {
        let result = self.new_attached();
        self.net.borrow_mut().connect(&vec![self.id], op.clone(), &vec![result.id]);
        result
    }

    // uplift method from Tensor to Var
    pub fn size(&self) -> Vec<usize> {
        self.net.borrow().data.get(&self.id).expect("").size()
    }
    pub fn numel(&self) -> usize {
        self.net.borrow().data.get(&self.id).expect("").numel()
    }

    // Convient method definition.
    var_op_method!(add, Add);
    var_op_method!(sub, Sub);
    var_op_method!(mul, Mul);
    var_op_method!(div, Div);
}

impl fmt::Display for Var {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "({}, {})",
            self.id,
            self.net.borrow().data.get(&self.id).expect("")
        )
    }
}

// uplift loss function from op to here.
pub fn mseloss(a: &Var, b: &Var) -> Var {
    let result = a.new_attached();
    a.net.borrow_mut().connect(&vec![a.id, b.id], Op::new(Box::new(MSELoss::new())), &vec![result.id]);
    result
}



/// The computation network.
/// Connection has duplication.
struct Net {
    data: GenIndex<Tensor>,
    ops: GenIndex<Op>,
    set_mark: BTreeSet<NetIndex>,
    graph: Graph,
    data_grad: BTreeMap<NetIndex, Tensor>,
}

impl Net {
    fn new() -> Net {
        Net {
            data: GenIndex::new(),
            ops: GenIndex::new(),
            set_mark: BTreeSet::new(),
            graph: Graph::new(),
            data_grad: BTreeMap::new(),
        }
    }

    /// Insert an empty var into the network.
    fn init_var(&mut self, var: &mut Var) {
        let id = self.data.insert(Tensor::new());
        self.graph.add_data(&id).expect("");
        var.id = id;
    }

    fn del_var(&mut self, var: &Var) {
        self.data.remove(&var.id).expect("");
        self.graph.del_data(&var.id).expect("");
    }

    /// Insert operator into the network.
    fn init_op(&mut self, op: Op) -> NetIndex {
        let id = self.ops.insert(op.clone());
        self.graph.add_op(&id).expect("");
        id
    }

    /// Build input-operator-output relation, with given components.
    fn connect(&mut self, input: &[NetIndex], op: Op, output: &[NetIndex]) {
        let opid = self.init_op(op);
        self.graph.connect(input, output, &opid).expect("");
    }

    /// set the set_mark, set_mark is used to label var with input value with it.
    fn set_mark(&mut self, did: &NetIndex) {
        self.set_mark.insert(*did);
    }
    fn unset_mark(&mut self, did: &NetIndex) {
        self.set_mark.remove(did);
    }

    /// Merge two computation graph
    fn merge(&self, o: &Net) -> Net {
        Net::new()
    }

    /// Forward evaluate the computaiton graph.
    fn eval(&mut self) -> Result<(), BTreeSet<NetIndex>> {
        let mut all_input = Vec::new();
        for i in &self.set_mark {
            all_input.push(i.clone());
        }
        
        self.graph
            .walk(
                &all_input[..],
                true,
                |input, output, op| {
                    //println!("op: {}", self.ops.get(op).expect("").get_name());
                    
                    let mut inputs: Vec<&Tensor> = Vec::new();
                    for input_id in input {
                        let a = self.data.get(input_id).expect("");
                        inputs.push(a);
                    }

                    let mut outputs: Vec<&Tensor> = Vec::new();
                    for output_id in output {
                        let a = self.data.get(output_id).expect("");
                        outputs.push(a);
                    }

                    self.ops
                        .get(op)
                        .expect("")
                        .apply(&inputs, &outputs);
                    
                    //println!("var.rs: {:?}", outputs[0].size());
                    
                }
            )?;

        Ok(())
    }

    fn bptt_scale(&mut self, r: f32) {
        let output = self.graph.get_output_cache();
        let mut output_grad = BTreeMap::new();
        for i in &output {
            output_grad.insert(i.clone(),
                               Tensor::fill(&self.data.get(i).expect("").size(),
                                            r));
        }
        self.bptt(&output_grad);
    }

    fn bptt(&mut self, output_grad: &BTreeMap<NetIndex, Tensor>) {
        let mut output = Vec::new();
        self.data_grad.clear();
        for (k, v) in output_grad {
            output.push(k.clone());
            self.data_grad.insert(k.clone(), v.clone());
        }

        for i in self.graph.list_data() {
            if ! self.data_grad.contains_key(&i) {
                self.data_grad.insert(i, Tensor::new());                
            }
        }
        
        self.graph
            .walk(
                &output[..],
                false,
                |output_grads, input_grads, op| {
                    // println!("op, bptt: {}", self.ops.get(op).expect("").get_name());

                    // collect input tensor.
                    let mut inputs: Vec<&Tensor> = Vec::new();
                    for input_id in input_grads {
                        let a = self.data.get(input_id).expect("");
                        inputs.push(a);
                    }

                    // collect the output tensor ready (forward view).
                    let mut output_grad: Vec<&Tensor> = Vec::new();
                    for output_id in output_grads {
                        let a = self.data_grad.get(output_id).expect("");
                        output_grad.push(a);
                    }
                    // collect the input tensor ready (forward view).
                    let mut input_grad: Vec<&Tensor> = Vec::new();
                    for input_id in input_grads {
                        let a = self.data_grad.get(input_id).expect("");
                        input_grad.push(a);
                    }

                    self.ops
                        .get(op)
                        .expect("")
                        .grad(&inputs, &output_grad, &input_grad);
                    
                    //println!("var.rs: {:?}", 1);
                    
                }
            ).expect("");
    }

    /// Iterate over all ops, no order guarantee
    pub fn visit_op<F>(&mut self, closure: F)
    where F: Fn(&Op) {
        for i in self.graph.list_op() {
            closure(self.ops.get(&i).expect(""));
        }
    }
        
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn genindex_new_add_del() {
    }
}