1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use crate::dataloader::{DataLoader, DataSlice};
use auto_diff::{Var, AutoDiffError};
use std::path::{Path, };
use std::io;
use std::fs::File;
use std::io::Read;
pub struct Mnist {
train: Var,
test: Var,
train_label: Var,
test_label: Var,
}
impl Mnist {
pub fn new() -> Mnist {
unimplemented!()
}
pub fn load(path: &Path) -> Mnist {
let train_fn = path.join("train-images-idx3-ubyte");
let test_fn = path.join("t10k-images-idx3-ubyte");
let train_label_fn = path.join("train-labels-idx1-ubyte");
let test_label_fn = path.join("t10k-labels-idx1-ubyte");
let train_img;
let test_img;
let train_label;
let test_label;
if path.exists() {
train_img = Self::load_images(train_fn);
test_img = Self::load_images(test_fn);
train_label = Self::load_labels(train_label_fn);
test_label = Self::load_labels(test_label_fn);
} else {
unimplemented!()
}
Mnist {
train: train_img,
test: test_img,
train_label,
test_label,
}
}
fn load_images<P: AsRef<Path>>(path: P) -> Var {
let mut reader = io::BufReader::new(File::open(path).expect(""));
let magic = Self::read_as_u32(&mut reader);
if magic != 2051 {
panic!("Invalid magic number. expected 2051, got {}", magic)
}
let num_image = Self::read_as_u32(&mut reader) as usize;
let rows = Self::read_as_u32(&mut reader) as usize;
let cols = Self::read_as_u32(&mut reader) as usize;
assert!(rows == 28 && cols == 28);
let mut buf: Vec<u8> = vec![0u8; num_image * rows * cols];
let _ = reader.read_exact(buf.as_mut());
let ret: Vec<f64> = buf.into_iter().map(|x| (x as f64) / 255.).collect();
Var::new(&ret[..], &[num_image, rows, cols])
}
fn load_labels<P: AsRef<Path>>(path: P) -> Var {
let mut reader = io::BufReader::new(File::open(path).expect(""));
let magic = Self::read_as_u32(&mut reader);
if magic != 2049 {
panic!("Invalid magic number. Got expect 2049, got {}", magic);
}
let num_label = Self::read_as_u32(&mut reader) as usize;
let mut buf: Vec<u8> = vec![0u8; num_label];
let _ = reader.read_exact(buf.as_mut());
let ret: Vec<f64> = buf.into_iter().map(|x| x as f64).collect();
Var::new(&ret[..], &[num_label])
}
fn read_as_u32<T: Read>(reader: &mut T) -> u32 {
let mut buf: [u8; 4] = [0, 0, 0, 0];
let _ = reader.read_exact(&mut buf);
u32::from_be_bytes(buf)
}
}
impl DataLoader for Mnist {
fn get_size(&self, slice: Option<DataSlice>) -> Result<Vec<usize>, AutoDiffError> {
match slice {
Some(DataSlice::Train) => {Ok(self.train.size())},
Some(DataSlice::Test) => {Ok(self.test.size())},
None => {
let n = self.train.size()[0] + self.test.size()[1];
let mut new_size = self.train.size();
new_size[0] = n;
Ok(new_size)
},
_ => {Err(AutoDiffError::new("TODO"))}
}
}
fn get_item(&self, index: usize, slice: Option<DataSlice>) -> Result<(Var, Var), AutoDiffError> {
match slice {
Some(DataSlice::Train) => {
let dim = self.train.size().len();
let mut index_block = vec![(index, index+1)];
index_block.append(
&mut vec![0; dim-1].iter().zip(&self.train.size()[1..])
.map(|(x,y)| (*x, *y)).collect());
let data = self.train.get_patch(&index_block, None)?;
let label = self.train_label.get_patch(&[(index, index+1)], None)?;
self.train.reset_net();
self.train_label.reset_net();
Ok((data, label))
},
Some(DataSlice::Test) => {
let dim = self.test.size().len();
let mut index_block = vec![(index, index+1)];
index_block.append(
&mut vec![0; dim-1].iter().zip(&self.test.size()[1..])
.map(|(x,y)| (*x, *y)).collect());
let data = self.test.get_patch(&index_block, None)?;
let label = self.test_label.get_patch(&[(index, index+1)], None)?;
self.test.reset_net();
self.test_label.reset_net();
Ok((data, label))
},
_ => {Err(AutoDiffError::new("only train and test"))}
}
}
fn get_batch(&self, start: usize, end: usize, slice: Option<DataSlice>) -> Result<(Var, Var), AutoDiffError> {
match slice {
Some(DataSlice::Train) => {
let dim = self.train.size().len();
let mut index_block = vec![(start, end)];
index_block.append(
&mut vec![0; dim-1].iter().zip(&self.train.size()[1..])
.map(|(x,y)| (*x, *y)).collect());
let data = self.train.get_patch(&index_block, None)?;
let label = self.train_label.get_patch(&[(start, end)], None)?;
self.train.reset_net();
self.train_label.reset_net();
Ok((data, label))
},
Some(DataSlice::Test) => {
let dim = self.test.size().len();
let mut index_block = vec![(start, end)];
index_block.append(
&mut vec![0; dim-1].iter().zip(&self.test.size()[1..])
.map(|(x,y)| (*x, *y)).collect());
let data = self.test.get_patch(&index_block, None)?;
let label = self.test_label.get_patch(&[(start, end)], None)?;
self.test.reset_net();
self.test_label.reset_net();
Ok((data, label))
},
_ => {Err(AutoDiffError::new("only train and test"))}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn mnist() {
let mnist = Mnist::load(Path::new("../auto-diff/examples/data/mnist/"));
let (t0, l0) = mnist.get_item(0, Some(DataSlice::Test)).unwrap();
println!("{:?}", t0);
}
}