autd3_firmware_emulator/cpu/
emulator.rs1use autd3_driver::{
2 ethercat::{DcSysTime, EC_OUTPUT_FRAME_SIZE},
3 firmware::cpu::{Header, RxMessage, TxMessage},
4};
5
6use getset::{CopyGetters, Getters, MutGetters};
7
8use crate::fpga::emulator::FPGAEmulator;
9
10use super::params::*;
11
12#[derive(CopyGetters, Getters, MutGetters)]
13pub struct CPUEmulator {
14 #[getset(get_copy = "pub")]
15 pub(crate) idx: usize,
16 pub(crate) ack: u8,
17 pub(crate) last_msg_id: u8,
18 pub(crate) rx_data: u8,
19 #[getset(get_copy = "pub")]
20 pub(crate) reads_fpga_state: bool,
21 pub(crate) reads_fpga_state_store: bool,
22 pub(crate) mod_cycle: u32,
23 pub(crate) stm_write: u32,
24 pub(crate) stm_cycle: [u32; 2],
25 pub(crate) stm_mode: [u16; 2],
26 pub(crate) stm_rep: [u16; 2],
27 pub(crate) stm_freq_div: [u16; 2],
28 pub(crate) stm_segment: u8,
29 pub(crate) stm_transition_mode: u8,
30 pub(crate) stm_transition_value: u64,
31 pub(crate) num_foci: u8,
32 pub(crate) mod_freq_div: [u16; 2],
33 pub(crate) mod_segment: u8,
34 pub(crate) mod_rep: [u16; 2],
35 pub(crate) mod_transition_mode: u8,
36 pub(crate) mod_transition_value: u64,
37 pub(crate) gain_stm_mode: u8,
38 #[getset(get = "pub", get_mut = "pub")]
39 pub(crate) fpga: FPGAEmulator,
40 #[getset(get_copy = "pub")]
41 pub(crate) synchronized: bool,
42 #[getset(get_copy = "pub")]
43 pub(crate) num_transducers: usize,
44 pub(crate) fpga_flags_internal: u16,
45 #[getset(get_copy = "pub")]
46 pub(crate) silencer_strict_mode: bool,
47 pub(crate) min_freq_div_intensity: u16,
48 pub(crate) min_freq_div_phase: u16,
49 pub(crate) is_rx_data_used: bool,
50 #[getset(get_copy = "pub")]
51 pub(crate) dc_sys_time: DcSysTime,
52 #[getset(get_copy = "pub")]
53 pub(crate) port_a_podr: u8,
54}
55
56impl CPUEmulator {
57 #[must_use]
58 pub fn new(id: usize, num_transducers: usize) -> Self {
59 let mut s = Self {
60 idx: id,
61 ack: 0x00,
62 last_msg_id: 0xFF,
63 rx_data: 0x00,
64 reads_fpga_state: false,
65 reads_fpga_state_store: false,
66 mod_cycle: 0,
67 stm_cycle: [1, 1],
68 stm_mode: [STM_MODE_GAIN, STM_MODE_GAIN],
69 gain_stm_mode: 0,
70 stm_transition_mode: TRANSITION_MODE_SYNC_IDX,
71 stm_transition_value: 0,
72 num_foci: 1,
73 mod_transition_mode: TRANSITION_MODE_SYNC_IDX,
74 mod_transition_value: 0,
75 fpga: FPGAEmulator::new(num_transducers),
76 synchronized: false,
77 num_transducers,
78 fpga_flags_internal: 0x0000,
79 mod_freq_div: [10, 10],
80 mod_segment: 0,
81 stm_freq_div: [0xFFFF, 0xFFFF],
82 stm_segment: 0,
83 stm_write: 0,
84 silencer_strict_mode: true,
85 min_freq_div_intensity: 10,
86 min_freq_div_phase: 40,
87 is_rx_data_used: false,
88 dc_sys_time: DcSysTime::now(),
89 stm_rep: [0xFFFF, 0xFFFF],
90 mod_rep: [0xFFFF, 0xFFFF],
91 port_a_podr: 0x00,
92 };
93 s.init();
94 s
95 }
96
97 #[must_use]
98 pub const fn rx(&self) -> RxMessage {
99 RxMessage::new(self.rx_data, self.ack)
100 }
101
102 pub fn send(&mut self, tx: &[TxMessage]) {
103 self.ecat_recv(&tx[self.idx]);
104 }
105
106 pub fn init(&mut self) {
107 self.fpga.init();
108 unsafe {
109 _ = self.clear(&[]);
110 }
111 }
112
113 pub fn update(&mut self) {
114 self.update_with_sys_time(DcSysTime::now());
115 }
116
117 pub fn update_with_sys_time(&mut self, sys_time: DcSysTime) {
118 self.fpga.update_with_sys_time(sys_time);
119 self.read_fpga_state();
120 self.dc_sys_time = sys_time;
121 }
122
123 #[must_use]
124 pub const fn should_update(&self) -> bool {
125 self.reads_fpga_state
126 }
127
128 pub fn set_last_msg_id(&mut self, msg_id: u8) {
129 self.last_msg_id = msg_id;
130 self.ack = msg_id;
131 }
132}
133
134impl CPUEmulator {
135 #[must_use]
136 pub(crate) const fn cast<T>(data: &[u8]) -> T {
137 unsafe { (data.as_ptr() as *const T).read_unaligned() }
138 }
139
140 #[must_use]
141 const fn get_addr(select: u8, addr: u16) -> u16 {
142 ((select as u16 & 0x0003) << 14) | (addr & 0x3FFF)
143 }
144
145 #[must_use]
146 pub(crate) fn bram_read(&self, select: u8, addr: u16) -> u16 {
147 let addr = Self::get_addr(select, addr);
148 self.fpga.read(addr)
149 }
150
151 pub(crate) fn bram_write(&mut self, select: u8, addr: u16, data: u16) {
152 let addr = Self::get_addr(select, addr);
153 self.fpga.write(addr, data)
154 }
155
156 pub(crate) fn bram_cpy(&mut self, select: u8, addr_base: u16, data: *const u16, size: usize) {
157 let mut addr = Self::get_addr(select, addr_base);
158 let mut src = data;
159 (0..size).for_each(|_| unsafe {
160 self.fpga.write(addr, src.read());
161 addr += 1;
162 src = src.add(1);
163 })
164 }
165
166 pub(crate) fn bram_set(&mut self, select: u8, addr_base: u16, value: u16, size: usize) {
167 let mut addr = Self::get_addr(select, addr_base);
168 (0..size).for_each(|_| {
169 self.fpga.write(addr, value);
170 addr += 1;
171 })
172 }
173
174 fn read_fpga_state(&mut self) {
175 if self.is_rx_data_used {
176 return;
177 }
178 if self.reads_fpga_state {
179 self.rx_data = FPGA_STATE_READS_FPGA_STATE_ENABLED
180 | self.bram_read(BRAM_SELECT_CONTROLLER, ADDR_FPGA_STATE) as u8;
181 } else {
182 self.rx_data &= !FPGA_STATE_READS_FPGA_STATE_ENABLED;
183 }
184 }
185
186 #[must_use]
187 fn handle_payload(&mut self, data: &[u8]) -> u8 {
188 unsafe {
189 match data[0] {
190 TAG_CLEAR => self.clear(data),
191 TAG_SYNC => self.synchronize(data),
192 TAG_FIRM_INFO => self.firm_info(data),
193 TAG_MODULATION => self.write_mod(data),
194 TAG_MODULATION_CHANGE_SEGMENT => self.change_mod_segment(data),
195 TAG_SILENCER => self.config_silencer(data),
196 TAG_GAIN => self.write_gain(data),
197 TAG_GAIN_CHANGE_SEGMENT => self.change_gain_segment(data),
198 TAG_GAIN_STM_CHANGE_SEGMENT => self.change_gain_stm_segment(data),
199 TAG_FOCI_STM => self.write_foci_stm(data),
200 TAG_FOCI_STM_CHANGE_SEGMENT => self.change_foci_stm_segment(data),
201 TAG_GAIN_STM => self.write_gain_stm(data),
202 TAG_FORCE_FAN => self.configure_force_fan(data),
203 TAG_READS_FPGA_STATE => self.configure_reads_fpga_state(data),
204 TAG_CONFIG_PULSE_WIDTH_ENCODER => self.config_pwe(data),
205 TAG_DEBUG => self.config_debug(data),
206 TAG_EMULATE_GPIO_IN => self.emulate_gpio_in(data),
207 TAG_CPU_GPIO_OUT => self.cpu_gpio_out(data),
208 TAG_PHASE_CORRECTION => self.phase_corr(data),
209 _ => ERR_NOT_SUPPORTED_TAG,
210 }
211 }
212 }
213
214 fn ecat_recv(&mut self, data: *const TxMessage) {
215 let data: &[u8] = unsafe { std::slice::from_raw_parts(data as _, EC_OUTPUT_FRAME_SIZE) };
216
217 let header = unsafe { &*(data.as_ptr() as *const Header) };
218
219 if self.last_msg_id == header.msg_id {
220 return;
221 }
222 self.last_msg_id = header.msg_id;
223
224 self.read_fpga_state();
225
226 if (header.msg_id & 0x80) != 0 {
227 self.ack = ERR_INVALID_MSG_ID;
228 return;
229 }
230
231 self.ack = self.handle_payload(&data[std::mem::size_of::<Header>()..]);
232 if (self.ack & ERR_BIT) != 0 {
233 return;
234 }
235
236 if header.slot_2_offset != 0 {
237 self.ack = self.handle_payload(
238 &data[std::mem::size_of::<Header>() + header.slot_2_offset as usize..],
239 );
240 if (self.ack & ERR_BIT) != 0 {
241 return;
242 }
243 }
244
245 self.bram_write(
246 BRAM_SELECT_CONTROLLER,
247 ADDR_CTL_FLAG,
248 self.fpga_flags_internal,
249 );
250
251 self.ack = header.msg_id;
252 }
253}
254
255#[cfg(test)]
256mod tests {
257 use super::*;
258
259 use rand::Rng;
260
261 #[test]
262 fn cpu_idx() {
263 let mut rng = rand::rng();
264 let idx: u16 = rng.random();
265 let cpu = CPUEmulator::new(idx as _, 249);
266 assert_eq!(idx as usize, cpu.idx());
267 }
268
269 #[test]
270 fn num_transducers() {
271 let cpu = CPUEmulator::new(0, 249);
272 assert_eq!(249, cpu.num_transducers());
273 }
274
275 #[test]
276 fn dc_sys_time() {
277 let mut cpu = CPUEmulator::new(0, 249);
278
279 let sys_time = DcSysTime::now() + std::time::Duration::from_nanos(1111);
280 cpu.update_with_sys_time(sys_time);
281 assert_eq!(sys_time, cpu.dc_sys_time());
282 }
283
284 #[test]
285 fn should_update() {
286 let mut cpu = CPUEmulator::new(0, 249);
287 assert!(!cpu.should_update());
288
289 cpu.reads_fpga_state = true;
290 assert!(cpu.should_update());
291 }
292}