1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
use autd3_driver::{
    derive::{Drive, EmitIntensity, LoopBehavior, Phase, Segment, TransitionMode},
    ethercat::{DcSysTime, ECAT_DC_SYS_TIME_BASE},
    firmware::fpga::GPIOIn,
};
use num_integer::Roots;

use crate::FPGAEmulator;

use super::super::params::*;

pub(crate) struct Memory {
    num_transducers: usize,
    controller_bram: Vec<u16>,
    modulator_bram_0: Vec<u16>,
    modulator_bram_1: Vec<u16>,
    stm_bram_0: Vec<u16>,
    stm_bram_1: Vec<u16>,
    duty_table_bram: Vec<u16>,
    drp_bram: Vec<u16>,
    tr_pos: Vec<u64>,
    sin_table: Vec<u8>,
    atan_table: Vec<u8>,
}

impl Memory {
    pub fn new(num_transducers: usize) -> Self {
        Self {
            num_transducers,
            controller_bram: vec![0x0000; 256],
            modulator_bram_0: vec![0x0000; 32768 / std::mem::size_of::<u16>()],
            modulator_bram_1: vec![0x0000; 32768 / std::mem::size_of::<u16>()],
            duty_table_bram: vec![0x0000; 32768 / std::mem::size_of::<u16>()],
            stm_bram_0: vec![0x0000; 1024 * 256],
            stm_bram_1: vec![0x0000; 1024 * 256],
            drp_bram: vec![0x0000; 32 * std::mem::size_of::<u64>()],
            tr_pos: vec![
                0x00000000, 0x01960000, 0x032d0000, 0x04c30000, 0x065a0000, 0x07f00000, 0x09860000,
                0x0b1d0000, 0x0cb30000, 0x0e4a0000, 0x0fe00000, 0x11760000, 0x130d0000, 0x14a30000,
                0x163a0000, 0x17d00000, 0x19660000, 0x1afd0000, 0x00000196, 0x04c30196, 0x065a0196,
                0x07f00196, 0x09860196, 0x0b1d0196, 0x0cb30196, 0x0e4a0196, 0x0fe00196, 0x11760196,
                0x130d0196, 0x14a30196, 0x163a0196, 0x17d00196, 0x1afd0196, 0x0000032d, 0x0196032d,
                0x032d032d, 0x04c3032d, 0x065a032d, 0x07f0032d, 0x0986032d, 0x0b1d032d, 0x0cb3032d,
                0x0e4a032d, 0x0fe0032d, 0x1176032d, 0x130d032d, 0x14a3032d, 0x163a032d, 0x17d0032d,
                0x1966032d, 0x1afd032d, 0x000004c3, 0x019604c3, 0x032d04c3, 0x04c304c3, 0x065a04c3,
                0x07f004c3, 0x098604c3, 0x0b1d04c3, 0x0cb304c3, 0x0e4a04c3, 0x0fe004c3, 0x117604c3,
                0x130d04c3, 0x14a304c3, 0x163a04c3, 0x17d004c3, 0x196604c3, 0x1afd04c3, 0x0000065a,
                0x0196065a, 0x032d065a, 0x04c3065a, 0x065a065a, 0x07f0065a, 0x0986065a, 0x0b1d065a,
                0x0cb3065a, 0x0e4a065a, 0x0fe0065a, 0x1176065a, 0x130d065a, 0x14a3065a, 0x163a065a,
                0x17d0065a, 0x1966065a, 0x1afd065a, 0x000007f0, 0x019607f0, 0x032d07f0, 0x04c307f0,
                0x065a07f0, 0x07f007f0, 0x098607f0, 0x0b1d07f0, 0x0cb307f0, 0x0e4a07f0, 0x0fe007f0,
                0x117607f0, 0x130d07f0, 0x14a307f0, 0x163a07f0, 0x17d007f0, 0x196607f0, 0x1afd07f0,
                0x00000986, 0x01960986, 0x032d0986, 0x04c30986, 0x065a0986, 0x07f00986, 0x09860986,
                0x0b1d0986, 0x0cb30986, 0x0e4a0986, 0x0fe00986, 0x11760986, 0x130d0986, 0x14a30986,
                0x163a0986, 0x17d00986, 0x19660986, 0x1afd0986, 0x00000b1d, 0x01960b1d, 0x032d0b1d,
                0x04c30b1d, 0x065a0b1d, 0x07f00b1d, 0x09860b1d, 0x0b1d0b1d, 0x0cb30b1d, 0x0e4a0b1d,
                0x0fe00b1d, 0x11760b1d, 0x130d0b1d, 0x14a30b1d, 0x163a0b1d, 0x17d00b1d, 0x19660b1d,
                0x1afd0b1d, 0x00000cb3, 0x01960cb3, 0x032d0cb3, 0x04c30cb3, 0x065a0cb3, 0x07f00cb3,
                0x09860cb3, 0x0b1d0cb3, 0x0cb30cb3, 0x0e4a0cb3, 0x0fe00cb3, 0x11760cb3, 0x130d0cb3,
                0x14a30cb3, 0x163a0cb3, 0x17d00cb3, 0x19660cb3, 0x1afd0cb3, 0x00000e4a, 0x01960e4a,
                0x032d0e4a, 0x04c30e4a, 0x065a0e4a, 0x07f00e4a, 0x09860e4a, 0x0b1d0e4a, 0x0cb30e4a,
                0x0e4a0e4a, 0x0fe00e4a, 0x11760e4a, 0x130d0e4a, 0x14a30e4a, 0x163a0e4a, 0x17d00e4a,
                0x19660e4a, 0x1afd0e4a, 0x00000fe0, 0x01960fe0, 0x032d0fe0, 0x04c30fe0, 0x065a0fe0,
                0x07f00fe0, 0x09860fe0, 0x0b1d0fe0, 0x0cb30fe0, 0x0e4a0fe0, 0x0fe00fe0, 0x11760fe0,
                0x130d0fe0, 0x14a30fe0, 0x163a0fe0, 0x17d00fe0, 0x19660fe0, 0x1afd0fe0, 0x00001176,
                0x01961176, 0x032d1176, 0x04c31176, 0x065a1176, 0x07f01176, 0x09861176, 0x0b1d1176,
                0x0cb31176, 0x0e4a1176, 0x0fe01176, 0x11761176, 0x130d1176, 0x14a31176, 0x163a1176,
                0x17d01176, 0x19661176, 0x1afd1176, 0x0000130d, 0x0196130d, 0x032d130d, 0x04c3130d,
                0x065a130d, 0x07f0130d, 0x0986130d, 0x0b1d130d, 0x0cb3130d, 0x0e4a130d, 0x0fe0130d,
                0x1176130d, 0x130d130d, 0x14a3130d, 0x163a130d, 0x17d0130d, 0x1966130d, 0x1afd130d,
                0x000014a3, 0x019614a3, 0x032d14a3, 0x04c314a3, 0x065a14a3, 0x07f014a3, 0x098614a3,
                0x0b1d14a3, 0x0cb314a3, 0x0e4a14a3, 0x0fe014a3, 0x117614a3, 0x130d14a3, 0x14a314a3,
                0x163a14a3, 0x17d014a3, 0x196614a3, 0x1afd14a3, 0x00000000, 0x00000000, 0x00000000,
                0x00000000, 0x00000000, 0x00000000, 0x00000000,
            ],
            sin_table: include_bytes!("sin.dat").to_vec(),
            atan_table: include_bytes!("atan.dat").to_vec(),
        }
    }

    pub fn init(&mut self) {
        self.controller_bram[ADDR_VERSION_NUM_MAJOR] =
            (ENABLED_FEATURES_BITS as u16) << 8 | VERSION_NUM_MAJOR as u16;
        self.controller_bram[ADDR_VERSION_NUM_MINOR] = VERSION_NUM_MINOR as u16;

        let pwe_init_data = include_bytes!("asin.dat");
        unsafe {
            std::ptr::copy_nonoverlapping(
                pwe_init_data.as_ptr(),
                self.duty_table_bram.as_mut_ptr() as _,
                pwe_init_data.len(),
            );
        }
        self.controller_bram[ADDR_PULSE_WIDTH_ENCODER_FULL_WIDTH_START] = 0xFF * 0xFF;
    }

    pub fn read(&self, addr: u16) -> u16 {
        let select = ((addr >> 14) & 0x0003) as u8;
        let addr = (addr & 0x3FFF) as usize;
        match select {
            BRAM_SELECT_CONTROLLER => self.controller_bram[addr],
            _ => unreachable!(),
        }
    }

    pub fn read_bram_as<T>(bram: &[u16], addr: usize) -> T {
        unsafe { (bram.as_ptr().add(addr) as *const T).read() }
    }

    pub fn write(&mut self, addr: u16, data: u16) {
        let select = ((addr >> 14) & 0x0003) as u8;
        let addr = (addr & 0x3FFF) as usize;
        match select {
            BRAM_SELECT_CONTROLLER => match addr >> 8 {
                BRAM_CNT_SEL_MAIN => self.controller_bram[addr] = data,
                BRAM_CNT_SEL_CLOCK => self.drp_bram[addr & 0xFF] = data,
                _ => unreachable!(),
            },
            BRAM_SELECT_MOD => match self.controller_bram[ADDR_MOD_MEM_WR_SEGMENT] {
                0 => self.modulator_bram_0[addr] = data,
                1 => self.modulator_bram_1[addr] = data,
                _ => unreachable!(),
            },
            BRAM_SELECT_DUTY_TABLE => {
                self.duty_table_bram[((self.controller_bram[ADDR_PULSE_WIDTH_ENCODER_TABLE_WR_PAGE]
                    as usize)
                    << 14)
                    | addr] = data;
            }
            BRAM_SELECT_STM => match self.controller_bram[ADDR_STM_MEM_WR_SEGMENT] {
                0 => {
                    self.stm_bram_0
                        [(self.controller_bram[ADDR_STM_MEM_WR_PAGE] as usize) << 14 | addr] = data
                }
                1 => {
                    self.stm_bram_1
                        [(self.controller_bram[ADDR_STM_MEM_WR_PAGE] as usize) << 14 | addr] = data
                }
                _ => unreachable!(),
            },
            _ => unreachable!(),
        }
    }

    pub fn update(&mut self, fpga_state: u16) {
        self.controller_bram[ADDR_FPGA_STATE] = fpga_state;
    }

    pub fn fpga_state(&self) -> u16 {
        self.controller_bram[ADDR_FPGA_STATE]
    }

    pub fn assert_thermal_sensor(&mut self) {
        self.controller_bram[ADDR_FPGA_STATE] |= 1 << 0;
    }

    pub fn deassert_thermal_sensor(&mut self) {
        self.controller_bram[ADDR_FPGA_STATE] &= !(1 << 0);
    }

    pub fn is_thermo_asserted(&self) -> bool {
        (self.controller_bram[ADDR_FPGA_STATE] & (1 << 0)) != 0
    }

    pub fn is_force_fan(&self) -> bool {
        (self.controller_bram[ADDR_CTL_FLAG] & (1 << CTL_FLAG_FORCE_FAN_BIT)) != 0
    }

    pub fn gpio_in(&self) -> [bool; 4] {
        [
            (self.controller_bram[ADDR_CTL_FLAG] & (1 << CTL_FLAG_BIT_GPIO_IN_0)) != 0,
            (self.controller_bram[ADDR_CTL_FLAG] & (1 << (CTL_FLAG_BIT_GPIO_IN_1))) != 0,
            (self.controller_bram[ADDR_CTL_FLAG] & (1 << (CTL_FLAG_BIT_GPIO_IN_2))) != 0,
            (self.controller_bram[ADDR_CTL_FLAG] & (1 << (CTL_FLAG_BIT_GPIO_IN_3))) != 0,
        ]
    }

    pub fn is_stm_gain_mode(&self, segment: Segment) -> bool {
        match segment {
            Segment::S0 => self.controller_bram[ADDR_STM_MODE0] == STM_MODE_GAIN,
            Segment::S1 => self.controller_bram[ADDR_STM_MODE1] == STM_MODE_GAIN,
            _ => unimplemented!(),
        }
    }

    pub fn silencer_update_rate_intensity(&self) -> u16 {
        self.controller_bram[ADDR_SILENCER_UPDATE_RATE_INTENSITY]
    }

    pub fn silencer_update_rate_phase(&self) -> u16 {
        self.controller_bram[ADDR_SILENCER_UPDATE_RATE_PHASE]
    }

    pub fn silencer_completion_steps_intensity(&self) -> u16 {
        self.controller_bram[ADDR_SILENCER_COMPLETION_STEPS_INTENSITY]
    }

    pub fn silencer_completion_steps_phase(&self) -> u16 {
        self.controller_bram[ADDR_SILENCER_COMPLETION_STEPS_PHASE]
    }

    pub fn silencer_fixed_completion_steps_mode(&self) -> bool {
        self.controller_bram[ADDR_SILENCER_MODE] == SILNCER_MODE_FIXED_COMPLETION_STEPS
    }

    pub fn stm_freq_division(&self, segment: Segment) -> u32 {
        Self::read_bram_as::<u32>(
            &self.controller_bram,
            match segment {
                Segment::S0 => ADDR_STM_FREQ_DIV0_0,
                Segment::S1 => ADDR_STM_FREQ_DIV1_0,
                _ => unimplemented!(),
            },
        )
    }

    pub fn stm_cycle(&self, segment: Segment) -> usize {
        self.controller_bram[match segment {
            Segment::S0 => ADDR_STM_CYCLE0,
            Segment::S1 => ADDR_STM_CYCLE1,
            _ => unimplemented!(),
        }] as usize
            + 1
    }

    pub fn sound_speed(&self, segment: Segment) -> u16 {
        self.controller_bram[match segment {
            Segment::S0 => ADDR_STM_SOUND_SPEED0,
            Segment::S1 => ADDR_STM_SOUND_SPEED1,
            _ => unimplemented!(),
        }]
    }

    pub fn num_foci(&self, segment: Segment) -> u8 {
        self.controller_bram[match segment {
            Segment::S0 => ADDR_STM_NUM_FOCI0,
            Segment::S1 => ADDR_STM_NUM_FOCI1,
            _ => unimplemented!(),
        }] as u8
    }

    pub fn stm_loop_behavior(&self, segment: Segment) -> LoopBehavior {
        match Self::read_bram_as::<u32>(
            &self.controller_bram,
            match segment {
                Segment::S0 => ADDR_STM_REP0_0,
                Segment::S1 => ADDR_STM_REP1_0,
                _ => unimplemented!(),
            },
        ) {
            0xFFFFFFFF => LoopBehavior::infinite(),
            v => LoopBehavior::finite(v + 1).unwrap(),
        }
    }

    pub fn stm_transition_mode(&self) -> TransitionMode {
        match self.controller_bram[ADDR_STM_TRANSITION_MODE] as u8 {
            TRANSITION_MODE_SYNC_IDX => TransitionMode::SyncIdx,
            TRANSITION_MODE_SYS_TIME => TransitionMode::SysTime(
                DcSysTime::from_utc(ECAT_DC_SYS_TIME_BASE).unwrap()
                    + std::time::Duration::from_nanos(Self::read_bram_as::<u64>(
                        &self.controller_bram,
                        ADDR_STM_TRANSITION_VALUE_0,
                    )),
            ),
            TRANSITION_MODE_GPIO => TransitionMode::GPIO(
                match Self::read_bram_as::<u64>(&self.controller_bram, ADDR_STM_TRANSITION_VALUE_0)
                {
                    0 => GPIOIn::I0,
                    1 => GPIOIn::I1,
                    2 => GPIOIn::I2,
                    3 => GPIOIn::I3,
                    _ => unreachable!(),
                },
            ),
            TRANSITION_MODE_EXT => TransitionMode::Ext,
            TRANSITION_MODE_IMMEDIATE => TransitionMode::Immediate,
            _ => unreachable!(),
        }
    }

    pub fn modulation_freq_division(&self, segment: Segment) -> u32 {
        Self::read_bram_as::<u32>(
            &self.controller_bram,
            match segment {
                Segment::S0 => ADDR_MOD_FREQ_DIV0_0,
                Segment::S1 => ADDR_MOD_FREQ_DIV1_0,
                _ => unimplemented!(),
            },
        )
    }

    pub fn modulation_cycle(&self, segment: Segment) -> usize {
        self.controller_bram[match segment {
            Segment::S0 => ADDR_MOD_CYCLE0,
            Segment::S1 => ADDR_MOD_CYCLE1,
            _ => unimplemented!(),
        }] as usize
            + 1
    }

    pub fn modulation_loop_behavior(&self, segment: Segment) -> LoopBehavior {
        match Self::read_bram_as::<u32>(
            &self.controller_bram,
            match segment {
                Segment::S0 => ADDR_MOD_REP0_0,
                Segment::S1 => ADDR_MOD_REP1_0,
                _ => unimplemented!(),
            },
        ) {
            0xFFFFFFFF => LoopBehavior::infinite(),
            v => LoopBehavior::finite(v + 1).unwrap(),
        }
    }

    pub fn modulation_at(&self, segment: Segment, idx: usize) -> u8 {
        let m = match segment {
            Segment::S0 => &self.modulator_bram_0[idx >> 1],
            Segment::S1 => &self.modulator_bram_1[idx >> 1],
            _ => unimplemented!(),
        };
        let m = if idx % 2 == 0 { m & 0xFF } else { m >> 8 };
        m as u8
    }

    pub fn modulation(&self, segment: Segment) -> Vec<u8> {
        (0..self.modulation_cycle(segment))
            .map(|i| self.modulation_at(segment, i))
            .collect()
    }

    pub fn mod_transition_mode(&self) -> TransitionMode {
        match self.controller_bram[ADDR_MOD_TRANSITION_MODE] as u8 {
            TRANSITION_MODE_SYNC_IDX => TransitionMode::SyncIdx,
            TRANSITION_MODE_SYS_TIME => TransitionMode::SysTime(
                DcSysTime::from_utc(ECAT_DC_SYS_TIME_BASE).unwrap()
                    + std::time::Duration::from_nanos(Self::read_bram_as::<u64>(
                        &self.controller_bram,
                        ADDR_MOD_TRANSITION_VALUE_0,
                    )),
            ),
            TRANSITION_MODE_GPIO => TransitionMode::GPIO(
                match Self::read_bram_as::<u64>(&self.controller_bram, ADDR_MOD_TRANSITION_VALUE_0)
                {
                    0 => GPIOIn::I0,
                    1 => GPIOIn::I1,
                    2 => GPIOIn::I2,
                    3 => GPIOIn::I3,
                    _ => unreachable!(),
                },
            ),
            TRANSITION_MODE_EXT => TransitionMode::Ext,
            TRANSITION_MODE_IMMEDIATE => TransitionMode::Immediate,
            _ => unreachable!(),
        }
    }

    pub fn req_mod_segment(&self) -> Segment {
        match self.controller_bram[ADDR_MOD_REQ_RD_SEGMENT] {
            0 => Segment::S0,
            1 => Segment::S1,
            _ => unreachable!(),
        }
    }

    pub fn req_stm_segment(&self) -> Segment {
        match self.controller_bram[ADDR_STM_REQ_RD_SEGMENT] {
            0 => Segment::S0,
            1 => Segment::S1,
            _ => unreachable!(),
        }
    }

    pub fn pulse_width_encoder_table_at(&self, idx: usize) -> u8 {
        let v = self.duty_table_bram[idx >> 1];
        let v = if idx % 2 == 0 { v & 0xFF } else { v >> 8 };
        v as u8
    }

    pub fn pulse_width_encoder_full_width_start(&self) -> u16 {
        self.controller_bram[ADDR_PULSE_WIDTH_ENCODER_FULL_WIDTH_START]
    }

    pub fn pulse_width_encoder_table(&self) -> Vec<u8> {
        self.duty_table_bram
            .iter()
            .flat_map(|&d| vec![(d & 0xFF) as u8, (d >> 8) as u8])
            .collect()
    }

    pub fn debug_types(&self) -> [u8; 4] {
        [
            self.controller_bram[ADDR_DEBUG_TYPE0] as _,
            self.controller_bram[ADDR_DEBUG_TYPE1] as _,
            self.controller_bram[ADDR_DEBUG_TYPE2] as _,
            self.controller_bram[ADDR_DEBUG_TYPE3] as _,
        ]
    }

    pub fn debug_values(&self) -> [u16; 4] {
        [
            self.controller_bram[ADDR_DEBUG_VALUE0],
            self.controller_bram[ADDR_DEBUG_VALUE1],
            self.controller_bram[ADDR_DEBUG_VALUE2],
            self.controller_bram[ADDR_DEBUG_VALUE3],
        ]
    }

    pub fn drp_rom(&self) -> Vec<u64> {
        unsafe { std::slice::from_raw_parts(self.drp_bram.as_ptr() as *const u64, 32).to_vec() }
    }

    pub fn drives(&self, segment: Segment, idx: usize) -> Vec<Drive> {
        if self.is_stm_gain_mode(segment) {
            self.gain_stm_drives(segment, idx)
        } else {
            self.foci_stm_drives(segment, idx)
        }
    }

    fn gain_stm_drives(&self, segment: Segment, idx: usize) -> Vec<Drive> {
        match segment {
            Segment::S0 => &self.stm_bram_0,
            Segment::S1 => &self.stm_bram_1,
            _ => unimplemented!(),
        }
        .iter()
        .skip(256 * idx)
        .take(self.num_transducers)
        .map(|&d| {
            Drive::new(
                Phase::new((d & 0xFF) as u8),
                EmitIntensity::new(((d >> 8) & 0xFF) as u8),
            )
        })
        .collect()
    }

    fn foci_stm_drives(&self, segment: Segment, idx: usize) -> Vec<Drive> {
        let bram = match segment {
            Segment::S0 => &self.stm_bram_0,
            Segment::S1 => &self.stm_bram_1,
            _ => unimplemented!(),
        };
        let sound_speed = self.sound_speed(segment);

        let intensity = (bram[32 * idx + 3] >> 6 & 0x00FF) as u8;

        self.tr_pos
            .iter()
            .map(|&tr| {
                let tr_z = ((tr >> 32) & 0xFFFF) as i16 as i32;
                let tr_x = ((tr >> 16) & 0xFFFF) as i16 as i32;
                let tr_y = (tr & 0xFFFF) as i16 as i32;
                let (sin, cos) = (0..self.num_foci(segment) as usize).fold((0, 0), |acc, i| {
                    let mut x = (bram[32 * idx + 4 * i + 1] as u32) << 16 & 0x30000;
                    x |= bram[32 * idx + 4 * i] as u32;
                    let x = if (x & 0x20000) != 0 {
                        (x | 0xFFFC0000) as i32
                    } else {
                        x as i32
                    };
                    let mut y = (bram[32 * idx + 4 * i + 2] as u32) << 14 & 0x3C000;
                    y |= bram[32 * idx + 4 * i + 1] as u32 >> 2;
                    let y = if (y & 0x20000) != 0 {
                        (y | 0xFFFC0000) as i32
                    } else {
                        y as i32
                    };
                    let mut z = (bram[32 * idx + 4 * i + 3] as u32) << 12 & 0x3F000;
                    z |= bram[32 * idx + 4 * i + 2] as u32 >> 4;
                    let z = if (z & 0x20000) != 0 {
                        (z | 0xFFFC0000) as i32
                    } else {
                        z as i32
                    };
                    let offset = bram[32 * idx + 4 * i + 3] >> 6 & 0x00FF;

                    let d2 =
                        (x - tr_x) * (x - tr_x) + (y - tr_y) * (y - tr_y) + (z - tr_z) * (z - tr_z);
                    let dist = d2.sqrt() as u32;
                    let q = ((dist << 14) / sound_speed as u32) as usize;
                    let q = if i == 0 { q } else { q + offset as usize };
                    (
                        acc.0 + self.sin_table[q % 256] as u16,
                        acc.1 + self.sin_table[(q + 64) % 256] as u16,
                    )
                });
                let sin = ((sin / self.num_foci(segment) as u16) >> 1) as usize;
                let cos = ((cos / self.num_foci(segment) as u16) >> 1) as usize;
                let phase = self.atan_table[(sin << 7) | cos];
                Drive::new(Phase::new(phase), EmitIntensity::new(intensity))
            })
            .collect()
    }

    pub fn local_tr_pos(&self) -> &[u64] {
        &self.tr_pos
    }
}

impl FPGAEmulator {
    pub(crate) fn read(&self, addr: u16) -> u16 {
        self.mem.read(addr)
    }

    pub fn assert_thermal_sensor(&mut self) {
        self.mem.assert_thermal_sensor()
    }

    pub fn deassert_thermal_sensor(&mut self) {
        self.mem.deassert_thermal_sensor()
    }

    pub fn is_force_fan(&self) -> bool {
        self.mem.is_force_fan()
    }

    pub fn gpio_in(&self) -> [bool; 4] {
        self.mem.gpio_in()
    }

    pub fn is_stm_gain_mode(&self, segment: Segment) -> bool {
        self.mem.is_stm_gain_mode(segment)
    }

    pub fn silencer_update_rate_intensity(&self) -> u16 {
        self.mem.silencer_update_rate_intensity()
    }

    pub fn silencer_update_rate_phase(&self) -> u16 {
        self.mem.silencer_update_rate_phase()
    }

    pub fn silencer_completion_steps_intensity(&self) -> u16 {
        self.mem.silencer_completion_steps_intensity()
    }

    pub fn silencer_completion_steps_phase(&self) -> u16 {
        self.mem.silencer_completion_steps_phase()
    }

    pub fn silencer_fixed_completion_steps_mode(&self) -> bool {
        self.mem.silencer_fixed_completion_steps_mode()
    }

    pub fn stm_freq_division(&self, segment: Segment) -> u32 {
        self.mem.stm_freq_division(segment)
    }

    pub fn stm_cycle(&self, segment: Segment) -> usize {
        self.mem.stm_cycle(segment)
    }

    pub fn sound_speed(&self, segment: Segment) -> u16 {
        self.mem.sound_speed(segment)
    }

    pub fn stm_loop_behavior(&self, segment: Segment) -> LoopBehavior {
        self.mem.stm_loop_behavior(segment)
    }

    pub fn stm_transition_mode(&self) -> TransitionMode {
        self.mem.stm_transition_mode()
    }

    pub fn modulation_freq_division(&self, segment: Segment) -> u32 {
        self.mem.modulation_freq_division(segment)
    }

    pub fn modulation_cycle(&self, segment: Segment) -> usize {
        self.mem.modulation_cycle(segment)
    }

    pub fn modulation_loop_behavior(&self, segment: Segment) -> LoopBehavior {
        self.mem.modulation_loop_behavior(segment)
    }

    pub fn modulation_at(&self, segment: Segment, idx: usize) -> u8 {
        self.mem.modulation_at(segment, idx)
    }

    pub fn modulation(&self, segment: Segment) -> Vec<u8> {
        self.mem.modulation(segment)
    }

    pub fn mod_transition_mode(&self) -> TransitionMode {
        self.mem.mod_transition_mode()
    }

    pub fn req_mod_segment(&self) -> Segment {
        self.mem.req_mod_segment()
    }

    pub fn req_stm_segment(&self) -> Segment {
        self.mem.req_stm_segment()
    }

    pub fn pulse_width_encoder_table_at(&self, idx: usize) -> u8 {
        self.mem.pulse_width_encoder_table_at(idx)
    }

    pub fn pulse_width_encoder_full_width_start(&self) -> u16 {
        self.mem.pulse_width_encoder_full_width_start()
    }

    pub fn pulse_width_encoder_table(&self) -> Vec<u8> {
        self.mem.pulse_width_encoder_table()
    }

    pub fn debug_types(&self) -> [u8; 4] {
        self.mem.debug_types()
    }

    pub fn debug_values(&self) -> [u16; 4] {
        self.mem.debug_values()
    }

    pub fn drp_rom(&self) -> Vec<u64> {
        self.mem.drp_rom()
    }

    pub fn drives(&self, segment: Segment, idx: usize) -> Vec<Drive> {
        self.mem.drives(segment, idx)
    }

    pub fn local_tr_pos(&self) -> &[u64] {
        self.mem.local_tr_pos()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn read_panic() {
        let fpga = FPGAEmulator::new(249);
        let addr = (BRAM_SELECT_MOD as u16) << 14;
        fpga.read(addr as _);
    }

    #[test]
    fn modulation() {
        let mut fpga = FPGAEmulator::new(249);
        fpga.mem.modulator_bram_0[0] = 0x1234;
        fpga.mem.modulator_bram_0[1] = 0x5678;
        fpga.mem.controller_bram[ADDR_MOD_CYCLE0] = 3 - 1;
        assert_eq!(3, fpga.modulation_cycle(Segment::S0));
        assert_eq!(0x34, fpga.modulation_at(Segment::S0, 0));
        assert_eq!(0x12, fpga.modulation_at(Segment::S0, 1));
        assert_eq!(0x78, fpga.modulation_at(Segment::S0, 2));
        let m = fpga.modulation(Segment::S0);
        assert_eq!(3, m.len());
        assert_eq!(0x34, m[0]);
        assert_eq!(0x12, m[1]);
        assert_eq!(0x78, m[2]);
    }

    #[test]
    fn is_outputting() {
        let mut fpga = FPGAEmulator::new(249);
        fpga.mem.controller_bram[ADDR_STM_MODE0] = STM_MODE_GAIN;

        assert!(!fpga.is_outputting());

        fpga.mem.stm_bram_0[0] = 0xFFFF;
        assert!(!fpga.is_outputting());

        fpga.mem.modulator_bram_0[0] = 0xFFFF;
        fpga.mem.controller_bram[ADDR_MOD_CYCLE0] = 2 - 1;
        assert!(fpga.is_outputting());
    }
}