autd3_driver/firmware/operation/
gain.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use std::mem::size_of;

use crate::{
    error::AUTDDriverError,
    firmware::{
        fpga::{Drive, Segment, TransitionMode},
        operation::{Operation, TypeTag},
    },
    geometry::{Device, Transducer},
};

use derive_new::new;
use zerocopy::{Immutable, IntoBytes};

#[derive(Clone, Copy, IntoBytes, Immutable)]
#[repr(C)]
pub struct GainControlFlags(u8);

bitflags::bitflags! {
    impl GainControlFlags : u8 {
        const NONE   = 0;
        const UPDATE = 1 << 0;
    }
}

#[repr(C, align(2))]
#[derive(IntoBytes, Immutable)]
struct Gain {
    tag: TypeTag,
    segment: u8,
    flag: GainControlFlags,
    __: u8,
}

/// A trait to calculate the phase and intensity for [`Gain`].
///
/// [`Gain`]: crate::datagram::Gain
pub trait GainContext: Send + Sync {
    /// Calculates the phase and intensity for the transducer.
    fn calc(&self, tr: &Transducer) -> Drive;
}

#[derive(new)]
#[new(visibility = "pub(crate)")]
pub struct GainOp<Context: GainContext> {
    #[new(default)]
    is_done: bool,
    segment: Segment,
    transition: Option<TransitionMode>,
    context: Context,
}

impl<Context: GainContext> Operation for GainOp<Context> {
    fn required_size(&self, device: &Device) -> usize {
        size_of::<Gain>() + device.num_transducers() * size_of::<Drive>()
    }

    fn pack(&mut self, device: &Device, tx: &mut [u8]) -> Result<usize, AUTDDriverError> {
        super::write_to_tx(
            tx,
            Gain {
                tag: TypeTag::Gain,
                segment: self.segment as u8,
                flag: if let Some(mode) = self.transition {
                    if mode != TransitionMode::Immediate {
                        return Err(AUTDDriverError::InvalidTransitionMode);
                    } else {
                        GainControlFlags::UPDATE
                    }
                } else {
                    GainControlFlags::NONE
                },
                __: 0,
            },
        );
        tx[size_of::<Gain>()..]
            .chunks_mut(size_of::<Drive>())
            .zip(device.iter())
            .for_each(|(dst, tr)| {
                super::write_to_tx(dst, self.context.calc(tr));
            });

        self.is_done = true;
        Ok(size_of::<Gain>() + device.len() * size_of::<Drive>())
    }

    fn is_done(&self) -> bool {
        self.is_done
    }
}

#[cfg(test)]
mod tests {
    use size_of;

    use rand::prelude::*;

    use super::*;
    use crate::{
        firmware::fpga::{EmitIntensity, Phase},
        geometry::tests::create_device,
    };

    const NUM_TRANS_IN_UNIT: usize = 249;

    struct Context {
        data: Vec<Drive>,
    }

    impl GainContext for Context {
        fn calc(&self, tr: &Transducer) -> Drive {
            self.data[tr.idx()]
        }
    }

    #[test]
    fn test() {
        let device = create_device(0, NUM_TRANS_IN_UNIT as _);

        let mut tx = vec![0x00u8; size_of::<Gain>() + NUM_TRANS_IN_UNIT * size_of::<Drive>()];

        let mut rng = rand::thread_rng();
        let data: Vec<_> = (0..NUM_TRANS_IN_UNIT)
            .map(|_| {
                Drive::new(
                    Phase::new(rng.gen_range(0x00..=0xFF)),
                    EmitIntensity::new(rng.gen_range(0..=0xFF)),
                )
            })
            .collect();

        let mut op = GainOp::new(Segment::S0, Some(TransitionMode::Immediate), {
            let data = data.clone();
            Context { data }
        });

        assert_eq!(
            op.required_size(&device),
            size_of::<Gain>() + NUM_TRANS_IN_UNIT * size_of::<Drive>()
        );

        assert!(!op.is_done());

        assert!(op.pack(&device, &mut tx).is_ok());

        assert!(op.is_done());

        assert_eq!(tx[0], TypeTag::Gain as u8);
        tx.iter()
            .skip(size_of::<Gain>())
            .collect::<Vec<_>>()
            .chunks(2)
            .zip(data.iter())
            .for_each(|(d, g)| {
                assert_eq!(d[0], &g.phase().value());
                assert_eq!(d[1], &g.intensity().value());
            });
    }

    #[test]
    fn invalid_transition_mode() {
        let device = create_device(0, NUM_TRANS_IN_UNIT as _);

        let mut tx = vec![0x00u8; size_of::<Gain>() + NUM_TRANS_IN_UNIT * size_of::<Drive>()];

        let mut op = GainOp::new(Segment::S0, Some(TransitionMode::Ext), {
            Context { data: Vec::new() }
        });

        assert_eq!(
            Some(AUTDDriverError::InvalidTransitionMode),
            op.pack(&device, &mut tx).err()
        );
    }
}