1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
use std::mem::size_of;

use super::GainControlFlags;
use crate::{
    derive::Transducer,
    error::AUTDInternalError,
    firmware::{
        fpga::{Drive, Segment},
        operation::{write_to_tx, Operation, TypeTag},
    },
    geometry::Device,
};

#[repr(C, align(2))]
struct GainT {
    tag: TypeTag,
    segment: u8,
    flag: GainControlFlags,
    __pad: u8,
}

pub struct GainOp {
    gain: Box<dyn Fn(&Transducer) -> Drive + Sync + Send>,
    is_done: bool,
    segment: Segment,
    transition: bool,
}

impl GainOp {
    pub const fn new(
        segment: Segment,
        transition: bool,
        gain: Box<dyn Fn(&Transducer) -> Drive + Sync + Send>,
    ) -> Self {
        Self {
            gain,
            is_done: false,
            segment,
            transition,
        }
    }
}

impl Operation for GainOp {
    fn required_size(&self, device: &Device) -> usize {
        size_of::<GainT>() + device.num_transducers() * size_of::<Drive>()
    }

    fn pack(&mut self, device: &Device, tx: &mut [u8]) -> Result<usize, AUTDInternalError> {
        assert!(tx.len() >= size_of::<GainT>() + device.len() * size_of::<Drive>());
        write_to_tx(
            GainT {
                tag: TypeTag::Gain,
                segment: self.segment as u8,
                flag: if self.transition {
                    GainControlFlags::UPDATE
                } else {
                    GainControlFlags::NONE
                },
                __pad: 0,
            },
            tx,
        );
        device.iter().enumerate().for_each(|(i, tr)| {
            write_to_tx(
                (self.gain)(tr),
                &mut tx[size_of::<GainT>() + i * size_of::<Drive>()..],
            );
        });

        self.is_done = true;
        Ok(size_of::<GainT>() + device.len() * size_of::<Drive>())
    }

    fn is_done(&self) -> bool {
        self.is_done
    }
}

#[cfg(test)]
mod tests {
    use size_of;

    use rand::prelude::*;

    use super::*;
    use crate::{
        firmware::fpga::{EmitIntensity, Phase},
        geometry::tests::create_device,
    };

    const NUM_TRANS_IN_UNIT: usize = 249;

    #[test]
    fn test() {
        let device = create_device(0, NUM_TRANS_IN_UNIT);

        let mut tx = vec![0x00u8; size_of::<GainT>() + NUM_TRANS_IN_UNIT * size_of::<Drive>()];

        let mut rng = rand::thread_rng();
        let data: Vec<_> = (0..NUM_TRANS_IN_UNIT)
            .map(|_| {
                Drive::new(
                    Phase::new(rng.gen_range(0x00..=0xFF)),
                    EmitIntensity::new(rng.gen_range(0..=0xFF)),
                )
            })
            .collect();

        let mut op = GainOp::new(Segment::S0, true, {
            let data = data.clone();
            Box::new(move |tr| data[tr.idx()])
        });

        assert_eq!(
            op.required_size(&device),
            size_of::<GainT>() + NUM_TRANS_IN_UNIT * size_of::<Drive>()
        );

        assert!(!op.is_done());

        assert!(op.pack(&device, &mut tx).is_ok());

        assert!(op.is_done());

        assert_eq!(tx[0], TypeTag::Gain as u8);
        tx.iter()
            .skip(size_of::<GainT>())
            .collect::<Vec<_>>()
            .chunks(2)
            .zip(data.iter())
            .for_each(|(d, g)| {
                assert_eq!(d[0], &g.phase().value());
                assert_eq!(d[1], &g.intensity().value());
            });
    }
}