use super::{Matrix4, Quaternion, UnitQuaternion, Vector3, Vector4};
#[derive(Clone, Debug, PartialEq)]
pub struct Transducer {
idx: usize,
pos: Vector3,
rot: UnitQuaternion,
}
impl Transducer {
pub(crate) const fn new(idx: usize, pos: Vector3, rot: UnitQuaternion) -> Self {
assert!(idx < 256);
Self { idx, pos, rot }
}
pub fn affine(&mut self, t: Vector3, r: UnitQuaternion) {
let new_pos = Matrix4::from(r).append_translation(&t)
* Vector4::new(self.pos[0], self.pos[1], self.pos[2], 1.0);
self.pos = Vector3::new(new_pos[0], new_pos[1], new_pos[2]);
self.rot = r * self.rot;
}
pub const fn position(&self) -> &Vector3 {
&self.pos
}
pub const fn rotation(&self) -> &UnitQuaternion {
&self.rot
}
fn get_direction(dir: Vector3, rotation: &UnitQuaternion) -> Vector3 {
let dir: UnitQuaternion = UnitQuaternion::from_quaternion(Quaternion::from_imag(dir));
(rotation * dir * rotation.conjugate()).imag().normalize()
}
pub fn x_direction(&self) -> Vector3 {
Self::get_direction(Vector3::x(), self.rotation())
}
pub fn y_direction(&self) -> Vector3 {
Self::get_direction(Vector3::y(), self.rotation())
}
pub fn z_direction(&self) -> Vector3 {
Self::get_direction(Vector3::z(), self.rotation())
}
#[cfg(feature = "left_handed")]
pub fn axial_direction(&self) -> Vector3 {
-self.z_direction()
}
#[cfg(not(feature = "left_handed"))]
pub fn axial_direction(&self) -> Vector3 {
self.z_direction()
}
pub const fn idx(&self) -> usize {
self.idx
}
}
#[cfg(test)]
mod tests {
use std::f64::consts::PI;
use assert_approx_eq::assert_approx_eq;
use super::*;
macro_rules! assert_vec3_approx_eq {
($a:expr, $b:expr) => {
assert_approx_eq!($a.x, $b.x, 1e-3);
assert_approx_eq!($a.y, $b.y, 1e-3);
assert_approx_eq!($a.z, $b.z, 1e-3);
};
}
#[rstest::fixture]
fn tr() -> Transducer {
Transducer::new(0, Vector3::zeros(), UnitQuaternion::identity())
}
#[rstest::rstest]
#[test]
#[case(0)]
#[case(1)]
fn idx(#[case] i: usize) {
assert_eq!(
i,
Transducer::new(i, Vector3::zeros(), UnitQuaternion::identity()).idx()
);
}
#[rstest::rstest]
#[test]
fn affine(mut tr: Transducer) {
let t = Vector3::new(40., 50., 60.);
let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
tr.affine(t, rot);
let expect_x = Vector3::new(0., 1., 0.);
let expect_y = Vector3::new(-1., 0., 0.);
let expect_z = Vector3::new(0., 0., 1.);
assert_vec3_approx_eq!(expect_x, tr.x_direction());
assert_vec3_approx_eq!(expect_y, tr.y_direction());
assert_vec3_approx_eq!(expect_z, tr.z_direction());
let expect_pos = Vector3::zeros() + t;
assert_vec3_approx_eq!(expect_pos, tr.position());
}
}