use std::collections::HashMap;
use super::GainControlFlags;
use crate::{
datagram::{Gain, GainFilter},
error::AUTDInternalError,
firmware::{
fpga::{Drive, Segment},
operation::{cast, Operation, Remains, TypeTag},
},
geometry::{Device, Geometry},
};
#[repr(C, align(2))]
struct GainT {
tag: TypeTag,
segment: u8,
flag: GainControlFlags,
__pad: u8,
}
pub struct GainOp<G: Gain> {
gain: G,
drives: HashMap<usize, Vec<Drive>>,
remains: Remains,
segment: Segment,
transition: bool,
}
impl<G: Gain> GainOp<G> {
pub fn new(segment: Segment, transition: bool, gain: G) -> Self {
Self {
gain,
drives: Default::default(),
remains: Default::default(),
segment,
transition,
}
}
}
impl<G: Gain> Operation for GainOp<G> {
fn init(&mut self, geometry: &Geometry) -> Result<(), AUTDInternalError> {
self.drives = self.gain.calc(geometry, GainFilter::All)?;
self.remains.init(geometry, |_| 1);
Ok(())
}
fn required_size(&self, device: &Device) -> usize {
std::mem::size_of::<GainT>() + device.num_transducers() * std::mem::size_of::<Drive>()
}
fn pack(&mut self, device: &Device, tx: &mut [u8]) -> Result<usize, AUTDInternalError> {
let d = &self.drives[&device.idx()];
assert!(tx.len() >= std::mem::size_of::<GainT>() + d.len() * std::mem::size_of::<Drive>());
*cast::<GainT>(tx) = GainT {
tag: TypeTag::Gain,
segment: self.segment as u8,
flag: GainControlFlags::NONE,
__pad: 0,
};
cast::<GainT>(tx)
.flag
.set(GainControlFlags::UPDATE, self.transition);
unsafe {
std::ptr::copy_nonoverlapping(
d.as_ptr(),
tx[std::mem::size_of::<GainT>()..].as_mut_ptr() as *mut Drive,
d.len(),
);
}
self.remains[device] -= 1;
Ok(std::mem::size_of::<GainT>() + d.len() * std::mem::size_of::<Drive>())
}
fn is_done(&self, device: &Device) -> bool {
self.remains.is_done(device)
}
}
#[cfg(test)]
mod tests {
use rand::prelude::*;
use super::*;
use crate::{
defined::FREQ_40K,
firmware::{
fpga::{EmitIntensity, Phase},
operation::tests::{ErrGain, TestGain},
},
geometry::tests::create_geometry,
};
const NUM_TRANS_IN_UNIT: usize = 249;
const NUM_DEVICE: usize = 10;
#[test]
fn test() {
let geometry = create_geometry(NUM_DEVICE, NUM_TRANS_IN_UNIT, FREQ_40K);
let mut tx = vec![
0x00u8;
(std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<Drive>())
* NUM_DEVICE
];
let mut rng = rand::thread_rng();
let data = geometry
.devices()
.map(|dev| {
(
dev.idx(),
(0..dev.num_transducers())
.map(|_| {
Drive::new(
Phase::new(rng.gen_range(0x00..=0xFF)),
EmitIntensity::new(rng.gen_range(0..=0xFF)),
)
})
.collect(),
)
})
.collect();
let gain = TestGain { data };
let mut op = GainOp::<TestGain>::new(Segment::S0, true, gain.clone());
assert!(op.init(&geometry).is_ok());
geometry.devices().for_each(|dev| {
assert_eq!(
op.required_size(dev),
std::mem::size_of::<GainT>() + NUM_TRANS_IN_UNIT * std::mem::size_of::<Drive>()
)
});
geometry
.devices()
.for_each(|dev| assert_eq!(op.remains[dev], 1));
geometry.devices().for_each(|dev| {
assert!(op
.pack(
dev,
&mut tx[dev.idx()
* (std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<Drive>())..]
)
.is_ok());
});
geometry
.devices()
.for_each(|dev| assert_eq!(op.remains[dev], 0));
geometry.devices().for_each(|dev| {
assert_eq!(
tx[dev.idx()
* (std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<Drive>())],
TypeTag::Gain as u8
);
tx.iter()
.skip(
dev.idx()
* (std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<Drive>())
+ std::mem::size_of::<GainT>(),
)
.collect::<Vec<_>>()
.chunks(2)
.zip(gain.data[&dev.idx()].iter())
.for_each(|(d, g)| {
assert_eq!(d[0], &g.phase().value());
assert_eq!(d[1], &g.intensity().value());
})
});
}
#[test]
fn test_error() {
let geometry = create_geometry(NUM_DEVICE, NUM_TRANS_IN_UNIT, FREQ_40K);
let gain = ErrGain {
segment: Segment::S0,
transition: true,
};
let mut op = GainOp::<ErrGain>::new(Segment::S0, true, gain);
assert_eq!(
op.init(&geometry),
Err(AUTDInternalError::GainError("test".to_owned()))
);
}
}