use std::{f64::consts::PI, ops::Deref};
use crate::defined::METER;
use super::{Matrix3, Transducer, UnitQuaternion, Vector3};
pub struct Device {
idx: usize,
transducers: Vec<Transducer>,
pub enable: bool,
pub sound_speed: f64,
pub attenuation: f64,
inv: Matrix3,
ultrasound_freq: u32,
}
impl Device {
#[doc(hidden)]
pub fn new(idx: usize, transducers: Vec<Transducer>, ultrasound_freq: u32) -> Self {
let inv = Matrix3::from_columns(&[
transducers[0].x_direction(),
transducers[0].y_direction(),
transducers[0].z_direction(),
])
.transpose();
Self {
idx,
transducers,
enable: true,
sound_speed: 340.0 * METER,
attenuation: 0.0,
inv,
ultrasound_freq,
}
}
pub const fn idx(&self) -> usize {
self.idx
}
pub fn num_transducers(&self) -> usize {
self.transducers.len()
}
pub fn center(&self) -> Vector3 {
self.transducers
.iter()
.map(|tr| tr.position())
.sum::<Vector3>()
/ self.transducers.len() as f64
}
pub fn to_local(&self, p: &Vector3) -> Vector3 {
self.inv * (p - self.transducers[0].position())
}
pub fn translate_to(&mut self, t: Vector3) {
let cur_pos = self.transducers[0].position();
self.translate(t - cur_pos);
}
pub fn rotate_to(&mut self, r: UnitQuaternion) {
let cur_rot = self.transducers[0].rotation();
self.rotate(r * cur_rot.conjugate());
}
pub fn translate(&mut self, t: Vector3) {
self.affine(t, UnitQuaternion::identity());
}
pub fn rotate(&mut self, r: UnitQuaternion) {
self.affine(Vector3::zeros(), r);
}
pub fn affine(&mut self, t: Vector3, r: UnitQuaternion) {
self.transducers.iter_mut().for_each(|tr| tr.affine(t, r));
}
pub fn set_sound_speed_from_temp(&mut self, temp: f64) {
self.set_sound_speed_from_temp_with(temp, 1.4, 8.314_463, 28.9647e-3);
}
pub fn set_sound_speed_from_temp_with(&mut self, temp: f64, k: f64, r: f64, m: f64) {
self.sound_speed = (k * r * (273.15 + temp) / m).sqrt() * METER;
}
pub fn ultrasound_freq(&self) -> u32 {
self.ultrasound_freq
}
pub fn wavelength(&self) -> f64 {
self.sound_speed / self.ultrasound_freq as f64
}
pub fn wavenumber(&self) -> f64 {
2.0 * PI * self.ultrasound_freq as f64 / self.sound_speed
}
}
impl Deref for Device {
type Target = [Transducer];
fn deref(&self) -> &Self::Target {
&self.transducers
}
}
impl<'a> IntoIterator for &'a Device {
type Item = &'a Transducer;
type IntoIter = std::slice::Iter<'a, Transducer>;
fn into_iter(self) -> Self::IntoIter {
self.transducers.iter()
}
}
pub trait IntoDevice {
fn into_device(self, dev_idx: usize) -> Device;
}
#[cfg(test)]
pub mod tests {
use rand::Rng;
use super::*;
use crate::{
defined::{FREQ_40K, MILLIMETER, PI},
geometry::tests::create_device,
};
macro_rules! assert_approx_eq_vec3 {
($a:expr, $b:expr) => {
assert_approx_eq::assert_approx_eq!($a.x, $b.x, 1e-3);
assert_approx_eq::assert_approx_eq!($a.y, $b.y, 1e-3);
assert_approx_eq::assert_approx_eq!($a.z, $b.z, 1e-3);
};
}
macro_rules! assert_approx_eq_quat {
($a:expr, $b:expr) => {
assert_approx_eq::assert_approx_eq!($a.w, $b.w, 1e-3);
assert_approx_eq::assert_approx_eq!($a.i, $b.i, 1e-3);
assert_approx_eq::assert_approx_eq!($a.j, $b.j, 1e-3);
assert_approx_eq::assert_approx_eq!($a.k, $b.k, 1e-3);
};
}
#[rstest::rstest]
#[test]
#[case(0)]
#[case(1)]
fn test_idx(#[case] idx: usize) {
assert_eq!(idx, create_device(idx, 249, FREQ_40K).idx());
}
#[rstest::rstest]
#[test]
#[case(1)]
#[case(249)]
fn test_num_transducers(#[case] n: usize) {
assert_eq!(n, create_device(0, n, FREQ_40K).num_transducers());
}
#[test]
fn test_center() {
let transducers = itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
10.16 * Vector3::new(x as f64, y as f64, 0.),
UnitQuaternion::identity(),
)
})
.collect::<Vec<_>>();
let expected =
transducers.iter().map(|t| t.position()).sum::<Vector3>() / transducers.len() as f64;
let device = Device::new(0, transducers, FREQ_40K);
assert_approx_eq_vec3!(expected, device.center());
}
#[rstest::rstest]
#[test]
#[case(
Vector3::new(10., 20., 30.),
Vector3::new(10., 20., 30.),
Vector3::zeros(),
UnitQuaternion::identity()
)]
#[case(
Vector3::zeros(),
Vector3::new(10., 20., 30.),
Vector3::new(10., 20., 30.),
UnitQuaternion::identity()
)]
#[case(
Vector3::new(20., -10., 30.),
Vector3::new(10., 20., 30.),
Vector3::zeros(),
UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.)
)]
#[case(
Vector3::new(30., 30., -30.),
Vector3::new(40., 50., 60.),
Vector3::new(10., 20., 30.),
UnitQuaternion::from_axis_angle(&Vector3::x_axis(), PI / 2.)
)]
fn test_to_local(
#[case] expected: Vector3,
#[case] target: Vector3,
#[case] origin: Vector3,
#[case] quat: UnitQuaternion,
) {
let device = Device::new(
0,
itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
origin + 10.16 * Vector3::new(x as f64, y as f64, 0.),
quat,
)
})
.collect::<Vec<_>>(),
FREQ_40K,
);
assert_approx_eq_vec3!(expected, device.to_local(&target));
}
#[test]
fn test_translate_to() {
let mut rng = rand::thread_rng();
let origin = Vector3::new(rng.gen(), rng.gen(), rng.gen());
let transducers = itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
origin + 10.16 * Vector3::new(x as f64, y as f64, 0.),
UnitQuaternion::identity(),
)
})
.collect::<Vec<_>>();
let mut device = Device::new(0, transducers, FREQ_40K);
let t = Vector3::new(40., 50., 60.);
device.translate_to(t);
itertools::iproduct!((0..18), (0..14))
.map(|(y, x)| 10.16 * Vector3::new(x as f64, y as f64, 0.) + t)
.zip(device.iter())
.for_each(|(expect, tr)| {
assert_approx_eq_vec3!(expect, tr.position());
});
}
#[test]
fn test_rotate_to() {
let mut device = {
let mut device = Device::new(
0,
itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
10.16 * Vector3::new(x as f64, y as f64, 0.),
UnitQuaternion::identity(),
)
})
.collect::<Vec<_>>(),
FREQ_40K,
);
let mut rng = rand::thread_rng();
let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), rng.gen())
* UnitQuaternion::from_axis_angle(&Vector3::y_axis(), rng.gen())
* UnitQuaternion::from_axis_angle(&Vector3::z_axis(), rng.gen());
device.rotate(rot);
device
};
let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
device.rotate_to(rot);
let expect_x = Vector3::new(0., 1., 0.);
let expect_y = Vector3::new(-1., 0., 0.);
let expect_z = Vector3::new(0., 0., 1.);
device.iter().for_each(|tr| {
assert_approx_eq_quat!(rot, tr.rotation());
assert_approx_eq_vec3!(expect_x, tr.x_direction());
assert_approx_eq_vec3!(expect_y, tr.y_direction());
assert_approx_eq_vec3!(expect_z, tr.z_direction());
});
itertools::iproduct!((0..18), (0..14))
.map(|(y, x)| 10.16 * Vector3::new(-y as f64, x as f64, 0.))
.zip(device.iter())
.for_each(|(expect, tr)| {
assert_approx_eq_vec3!(expect, tr.position());
});
}
#[test]
fn test_translate() {
let mut rng = rand::thread_rng();
let origin = Vector3::new(rng.gen(), rng.gen(), rng.gen());
let transducers = itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
origin + 10.16 * Vector3::new(x as f64, y as f64, 0.),
UnitQuaternion::identity(),
)
})
.collect::<Vec<_>>();
let mut device = Device::new(0, transducers.clone(), FREQ_40K);
let t = Vector3::new(40., 50., 60.);
device.translate(t);
transducers
.iter()
.zip(device.iter())
.for_each(|(orig, tr)| {
assert_approx_eq_vec3!(orig.position() + t, tr.position());
});
}
#[test]
fn test_rotate() {
let transducers = itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
10.16 * Vector3::new(x as f64, y as f64, 0.),
UnitQuaternion::identity(),
)
})
.collect::<Vec<_>>();
let mut device = Device::new(0, transducers, FREQ_40K);
let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
device.rotate(rot);
let expect_x = Vector3::new(0., 1., 0.);
let expect_y = Vector3::new(-1., 0., 0.);
let expect_z = Vector3::new(0., 0., 1.);
device.iter().for_each(|tr| {
assert_approx_eq_quat!(rot, tr.rotation());
assert_approx_eq_vec3!(expect_x, tr.x_direction());
assert_approx_eq_vec3!(expect_y, tr.y_direction());
assert_approx_eq_vec3!(expect_z, tr.z_direction());
});
itertools::iproduct!((0..18), (0..14))
.map(|(y, x)| 10.16 * Vector3::new(-y as f64, x as f64, 0.))
.zip(device.iter())
.for_each(|(expect, tr)| {
assert_approx_eq_vec3!(expect, tr.position());
});
}
#[test]
fn test_affine() {
let transducers = itertools::iproduct!((0..18), (0..14))
.enumerate()
.map(|(i, (y, x))| {
Transducer::new(
i,
10.16 * Vector3::new(x as f64, y as f64, 0.),
UnitQuaternion::identity(),
)
})
.collect::<Vec<_>>();
let mut device = Device::new(0, transducers, FREQ_40K);
let t = Vector3::new(40., 50., 60.);
let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
* UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
device.affine(t, rot);
let expect_x = Vector3::new(0., 1., 0.);
let expect_y = Vector3::new(-1., 0., 0.);
let expect_z = Vector3::new(0., 0., 1.);
device.iter().for_each(|tr| {
assert_approx_eq_quat!(rot, tr.rotation());
assert_approx_eq_vec3!(expect_x, tr.x_direction());
assert_approx_eq_vec3!(expect_y, tr.y_direction());
assert_approx_eq_vec3!(expect_z, tr.z_direction());
});
itertools::iproduct!((0..18), (0..14))
.map(|(y, x)| 10.16 * Vector3::new(-y as f64, x as f64, 0.) + t)
.zip(device.iter())
.for_each(|(expect, tr)| {
assert_approx_eq_vec3!(expect, tr.position());
});
}
#[rstest::rstest]
#[test]
#[case(340.29527186788846e3, 15.)]
#[case(343.23498846612807e3, 20.)]
#[case(349.0401521469255e3, 30.)]
fn test_set_sound_speed_from_temp(#[case] expected: f64, #[case] temp: f64) {
let mut device = create_device(0, 249, FREQ_40K);
device.set_sound_speed_from_temp(temp);
assert_approx_eq::assert_approx_eq!(expected * MILLIMETER, device.sound_speed, 1e-3);
}
#[rstest::rstest]
#[test]
#[case(8.5, 340e3, 40000)]
#[case(10., 400e3, 40000)]
#[case(4.25, 340e3, 80000)]
#[case(5., 400e3, 80000)]
fn wavelength(#[case] expect: f64, #[case] c: f64, #[case] freq: u32) {
let mut device = create_device(0, 249, freq);
device.sound_speed = c;
assert_approx_eq::assert_approx_eq!(expect, device.wavelength());
}
#[rstest::rstest]
#[test]
#[case(0.7391982714328925, 340e3, 40000)]
#[case(0.6283185307179586, 400e3, 40000)]
#[case(1.478396542865785, 340e3, 80000)]
#[case(1.2566370614359172, 400e3, 80000)]
fn wavenumber(#[case] expect: f64, #[case] c: f64, #[case] freq: u32) {
let mut device = create_device(0, 249, freq);
device.sound_speed = c;
assert_approx_eq::assert_approx_eq!(expect, device.wavenumber());
}
}