use std::collections::HashMap;
use crate::{
common::{Drive, Segment},
datagram::{Gain, GainFilter},
error::AUTDInternalError,
fpga::FPGADrive,
geometry::{Device, Geometry},
operation::{cast, TypeTag},
};
use super::Operation;
#[derive(Clone, Copy)]
#[repr(C)]
pub struct GainControlFlags(u16);
bitflags::bitflags! {
impl GainControlFlags : u16 {
const NONE = 0;
const UPDATE_SEGMENT = 1 << 0;
}
}
#[repr(C, align(2))]
struct GainT {
tag: TypeTag,
segment: u8,
flag: GainControlFlags,
}
#[repr(C, align(2))]
struct GainUpdate {
tag: TypeTag,
segment: u8,
}
pub struct GainOp<G: Gain> {
gain: G,
drives: HashMap<usize, Vec<Drive>>,
remains: HashMap<usize, usize>,
segment: Segment,
update_segment: bool,
}
impl<G: Gain> GainOp<G> {
pub fn new(segment: Segment, update_segment: bool, gain: G) -> Self {
Self {
gain,
drives: Default::default(),
remains: Default::default(),
segment,
update_segment,
}
}
}
impl<G: Gain> Operation for GainOp<G> {
fn init(&mut self, geometry: &Geometry) -> Result<(), AUTDInternalError> {
self.drives = self.gain.calc(geometry, GainFilter::All)?;
self.remains = geometry.devices().map(|device| (device.idx(), 1)).collect();
Ok(())
}
fn required_size(&self, device: &Device) -> usize {
std::mem::size_of::<GainT>() + device.num_transducers() * std::mem::size_of::<FPGADrive>()
}
fn pack(&mut self, device: &Device, tx: &mut [u8]) -> Result<usize, AUTDInternalError> {
assert_eq!(self.remains[&device.idx()], 1);
let d = &self.drives[&device.idx()];
assert!(
tx.len() >= std::mem::size_of::<GainT>() + d.len() * std::mem::size_of::<FPGADrive>()
);
cast::<GainT>(tx).tag = TypeTag::Gain;
cast::<GainT>(tx).segment = self.segment as u8;
cast::<GainT>(tx).flag = GainControlFlags::NONE;
cast::<GainT>(tx)
.flag
.set(GainControlFlags::UPDATE_SEGMENT, self.update_segment);
unsafe {
std::slice::from_raw_parts_mut(
tx[std::mem::size_of::<GainT>()..].as_mut_ptr() as *mut FPGADrive,
d.len(),
)
.iter_mut()
.zip(d.iter())
.for_each(|(d, s)| d.set(s));
}
Ok(std::mem::size_of::<GainT>() + d.len() * std::mem::size_of::<FPGADrive>())
}
fn commit(&mut self, device: &Device) {
self.remains
.insert(device.idx(), self.remains[&device.idx()] - 1);
}
fn remains(&self, device: &Device) -> usize {
self.remains[&device.idx()]
}
}
pub struct GainChangeSegmentOp {
segment: Segment,
remains: HashMap<usize, usize>,
}
impl GainChangeSegmentOp {
pub fn new(segment: Segment) -> Self {
Self {
segment,
remains: HashMap::new(),
}
}
}
impl Operation for GainChangeSegmentOp {
fn pack(&mut self, device: &Device, tx: &mut [u8]) -> Result<usize, AUTDInternalError> {
assert_eq!(self.remains[&device.idx()], 1);
let d = cast::<GainUpdate>(tx);
d.tag = TypeTag::GainChangeSegment;
d.segment = self.segment as u8;
Ok(std::mem::size_of::<GainUpdate>())
}
fn required_size(&self, _: &Device) -> usize {
std::mem::size_of::<GainUpdate>()
}
fn init(&mut self, geometry: &Geometry) -> Result<(), AUTDInternalError> {
self.remains = geometry.devices().map(|device| (device.idx(), 1)).collect();
Ok(())
}
fn remains(&self, device: &Device) -> usize {
self.remains[&device.idx()]
}
fn commit(&mut self, device: &Device) {
self.remains.insert(device.idx(), 0);
}
}
#[cfg(test)]
mod tests {
use rand::prelude::*;
use super::*;
use crate::{
common::{EmitIntensity, Phase},
geometry::tests::create_geometry,
operation::tests::{ErrGain, TestGain},
};
const NUM_TRANS_IN_UNIT: usize = 249;
const NUM_DEVICE: usize = 10;
#[test]
fn gain_op() {
let geometry = create_geometry(NUM_DEVICE, NUM_TRANS_IN_UNIT);
let mut tx = vec![
0x00u8;
(std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<FPGADrive>())
* NUM_DEVICE
];
let mut rng = rand::thread_rng();
let data = geometry
.devices()
.map(|dev| {
(
dev.idx(),
(0..dev.num_transducers())
.map(|_| {
Drive::new(
Phase::new(rng.gen_range(0x00..=0xFF)),
EmitIntensity::new(rng.gen_range(0..=0xFF)),
)
})
.collect(),
)
})
.collect();
let gain = TestGain { data };
let mut op = GainOp::<TestGain>::new(Segment::S0, true, gain.clone());
assert!(op.init(&geometry).is_ok());
geometry.devices().for_each(|dev| {
assert_eq!(
op.required_size(dev),
std::mem::size_of::<GainT>() + NUM_TRANS_IN_UNIT * std::mem::size_of::<FPGADrive>()
)
});
geometry
.devices()
.for_each(|dev| assert_eq!(op.remains(dev), 1));
geometry.devices().for_each(|dev| {
assert!(op
.pack(
dev,
&mut tx[dev.idx()
* (std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<FPGADrive>())..]
)
.is_ok());
op.commit(dev);
});
geometry
.devices()
.for_each(|dev| assert_eq!(op.remains(dev), 0));
geometry.devices().for_each(|dev| {
assert_eq!(
tx[dev.idx()
* (std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<FPGADrive>())],
TypeTag::Gain as u8
);
tx.iter()
.skip(
dev.idx()
* (std::mem::size_of::<GainT>()
+ NUM_TRANS_IN_UNIT * std::mem::size_of::<FPGADrive>())
+ std::mem::size_of::<GainT>(),
)
.collect::<Vec<_>>()
.chunks(2)
.zip(gain.data[&dev.idx()].iter())
.for_each(|(d, g)| {
assert_eq!(d[0], &g.phase().value());
assert_eq!(d[1], &g.intensity().value());
})
});
}
#[test]
fn error_gain() {
let geometry = create_geometry(NUM_DEVICE, NUM_TRANS_IN_UNIT);
let gain = ErrGain {
segment: Segment::S0,
update_segment: true,
};
let mut op = GainOp::<ErrGain>::new(Segment::S0, true, gain);
assert_eq!(
op.init(&geometry),
Err(AUTDInternalError::GainError("test".to_owned()))
);
}
}