1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use super::{Matrix4, Quaternion, UnitQuaternion, Vector3, Vector4};

use crate::{
    common::Phase,
    defined::{float, PI, ULTRASOUND_FREQUENCY},
};

pub struct Transducer {
    idx: u8,
    pos: Vector3,
    rot: UnitQuaternion,
}

impl Transducer {
    /// Create transducer
    pub(crate) const fn new(idx: usize, pos: Vector3, rot: UnitQuaternion) -> Self {
        assert!(idx < 256);
        Self {
            idx: idx as u8,
            pos,
            rot,
        }
    }

    /// Affine transformation
    pub fn affine(&mut self, t: Vector3, r: UnitQuaternion) {
        let new_pos = Matrix4::from(r).append_translation(&t)
            * Vector4::new(self.pos[0], self.pos[1], self.pos[2], 1.0);
        self.pos = Vector3::new(new_pos[0], new_pos[1], new_pos[2]);
        self.rot = r * self.rot;
    }

    /// Calculate the phase of the transducer to align the phase at the specified position
    pub fn align_phase_at(&self, pos: Vector3, sound_speed: float) -> Phase {
        Phase::from_rad((pos - self.position()).norm() * self.wavenumber(sound_speed))
    }

    /// Get the position of the transducer
    pub const fn position(&self) -> &Vector3 {
        &self.pos
    }

    /// Get the rotation of the transducer
    pub const fn rotation(&self) -> &UnitQuaternion {
        &self.rot
    }

    fn get_direction(dir: Vector3, rotation: &UnitQuaternion) -> Vector3 {
        let dir: UnitQuaternion = UnitQuaternion::from_quaternion(Quaternion::from_imag(dir));
        (rotation * dir * rotation.conjugate()).imag().normalize()
    }

    /// Get the local index of the transducer
    pub fn x_direction(&self) -> Vector3 {
        Self::get_direction(Vector3::x(), self.rotation())
    }
    /// Get the y-direction of the transducer
    pub fn y_direction(&self) -> Vector3 {
        Self::get_direction(Vector3::y(), self.rotation())
    }
    /// Get the z-direction (axial direction) of the transducer
    pub fn z_direction(&self) -> Vector3 {
        Self::get_direction(Vector3::z(), self.rotation())
    }

    /// Get the local transducer index
    pub const fn idx(&self) -> usize {
        self.idx as usize
    }

    /// Get the wavelength of the transducer
    pub fn wavelength(&self, sound_speed: float) -> float {
        sound_speed / ULTRASOUND_FREQUENCY
    }
    /// Get the wavenumber of the transducer
    pub fn wavenumber(&self, sound_speed: float) -> float {
        2.0 * PI * ULTRASOUND_FREQUENCY / sound_speed
    }
}

#[cfg(test)]
mod tests {
    use assert_approx_eq::assert_approx_eq;

    use super::*;

    macro_rules! assert_vec3_approx_eq {
        ($a:expr, $b:expr) => {
            assert_approx_eq!($a.x, $b.x, 1e-3);
            assert_approx_eq!($a.y, $b.y, 1e-3);
            assert_approx_eq!($a.z, $b.z, 1e-3);
        };
    }

    #[test]
    fn idx() {
        let tr = Transducer::new(0, Vector3::zeros(), UnitQuaternion::identity());
        assert_eq!(0, tr.idx());

        let tr = Transducer::new(1, Vector3::zeros(), UnitQuaternion::identity());
        assert_eq!(1, tr.idx());
    }

    #[test]
    fn affine() {
        let mut tr = Transducer::new(0, Vector3::zeros(), UnitQuaternion::identity());

        let t = Vector3::new(40., 50., 60.);
        let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
            * UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
            * UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
        tr.affine(t, rot);

        let expect_x = Vector3::new(0., 1., 0.);
        let expect_y = Vector3::new(-1., 0., 0.);
        let expect_z = Vector3::new(0., 0., 1.);
        assert_vec3_approx_eq!(expect_x, tr.x_direction());
        assert_vec3_approx_eq!(expect_y, tr.y_direction());
        assert_vec3_approx_eq!(expect_z, tr.z_direction());

        let expect_pos = Vector3::zeros() + t;
        assert_vec3_approx_eq!(expect_pos, tr.position());
    }

    #[test]
    fn wavelength() {
        let tr = Transducer::new(0, Vector3::zeros(), UnitQuaternion::identity());
        let c = 340e3;
        assert_approx_eq!(c / ULTRASOUND_FREQUENCY, tr.wavelength(c));
    }

    #[test]
    fn wavenumber() {
        let tr = Transducer::new(0, Vector3::zeros(), UnitQuaternion::identity());
        let c = 340e3;
        assert_approx_eq!(2. * PI * ULTRASOUND_FREQUENCY / c, tr.wavenumber(c));
    }

    #[test]
    fn align_phase_at() {
        let tr = Transducer::new(0, Vector3::zeros(), UnitQuaternion::identity());

        let c = 340e3;
        let wavelength = tr.wavelength(c);

        let p = Vector3::zeros();
        assert_eq!(0, tr.align_phase_at(p, c).value());

        let p = Vector3::new(wavelength, 0., 0.);
        assert_eq!(0, tr.align_phase_at(p, c).value());

        let p = Vector3::new(0., -wavelength, 0.);
        assert_eq!(0, tr.align_phase_at(p, c).value());

        let p = Vector3::new(0., 0., wavelength / 2.);
        assert_eq!(128, tr.align_phase_at(p, c).value());
    }
}