1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * File: amplitude.rs
 * Project: gain
 * Created Date: 08/10/2023
 * Author: Shun Suzuki
 * -----
 * Last Modified: 14/10/2023
 * Modified By: Shun Suzuki (suzuki@hapis.k.u-tokyo.ac.jp)
 * -----
 * Copyright (c) 2023 Shun Suzuki. All rights reserved.
 *
 */

pub use super::GainControlFlags;

use std::collections::HashMap;

use crate::{
    common::{Amplitude, Drive},
    error::AUTDInternalError,
    fpga::AdvancedDriveDuty,
    geometry::{Device, Geometry, Transducer},
    operation::{Operation, TypeTag},
};

pub struct AmplitudeOp {
    amp: Amplitude,
    remains: HashMap<usize, usize>,
}

impl AmplitudeOp {
    pub fn new(amp: Amplitude) -> Self {
        Self {
            amp,
            remains: Default::default(),
        }
    }
}

impl<T: Transducer> Operation<T> for AmplitudeOp {
    fn pack(&mut self, device: &Device<T>, tx: &mut [u8]) -> Result<usize, AUTDInternalError> {
        tx[0] = TypeTag::Gain as u8;

        tx[1] = (GainControlFlags::NONE | GainControlFlags::DUTY).bits();

        assert!(
            tx.len() >= 2 + device.num_transducers() * std::mem::size_of::<AdvancedDriveDuty>()
        );

        unsafe {
            let dst = std::slice::from_raw_parts_mut(
                tx[2..].as_mut_ptr() as *mut AdvancedDriveDuty,
                device.num_transducers(),
            );
            dst.iter_mut()
                .zip(device.iter().map(|tr| tr.cycle()))
                .for_each(|(d, c)| {
                    d.set(
                        &Drive {
                            amp: self.amp,
                            phase: 0.,
                        },
                        c,
                    )
                });
        }

        Ok(2 + device.num_transducers() * std::mem::size_of::<AdvancedDriveDuty>())
    }

    fn required_size(&self, device: &Device<T>) -> usize {
        2 + device.num_transducers() * std::mem::size_of::<AdvancedDriveDuty>()
    }

    fn init(&mut self, geometry: &Geometry<T>) -> Result<(), AUTDInternalError> {
        self.remains = geometry.devices().map(|device| (device.idx(), 1)).collect();
        Ok(())
    }

    fn remains(&self, device: &Device<T>) -> usize {
        self.remains[&device.idx()]
    }

    fn commit(&mut self, device: &Device<T>) {
        self.remains
            .insert(device.idx(), self.remains[&device.idx()] - 1);
    }
}

#[cfg(test)]
mod tests {
    use rand::prelude::*;

    use super::*;
    use crate::geometry::{tests::create_geometry, AdvancedPhaseTransducer};

    const NUM_TRANS_IN_UNIT: usize = 249;
    const NUM_DEVICE: usize = 10;

    #[test]
    fn amplitude_op() {
        let geometry = create_geometry::<AdvancedPhaseTransducer>(NUM_DEVICE, NUM_TRANS_IN_UNIT);

        let mut tx =
            vec![0x00u8; (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>()) * NUM_DEVICE];

        let mut rng = rand::thread_rng();
        let amp = Amplitude::new_clamped(rng.gen_range(0.0..1.0));
        let mut op = AmplitudeOp::new(amp);

        assert!(op.init(&geometry).is_ok());

        geometry
            .devices()
            .for_each(|dev| assert_eq!(op.remains(dev), 1));

        geometry.devices().for_each(|dev| {
            assert_eq!(
                op.required_size(dev),
                2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<AdvancedDriveDuty>()
            )
        });

        geometry.devices().for_each(|dev| {
            assert!(op
                .pack(
                    dev,
                    &mut tx[dev.idx() * (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>())..]
                )
                .is_ok());
            op.commit(dev);
        });

        geometry
            .devices()
            .for_each(|dev| assert_eq!(op.remains(dev), 0));

        geometry.devices().for_each(|dev| {
            assert_eq!(
                tx[dev.idx() * (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>())],
                TypeTag::Gain as u8
            );
            let flag = tx[dev.idx() * (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>()) + 1];
            assert_eq!(flag & GainControlFlags::LEGACY.bits(), 0x00);
            assert_ne!(flag & GainControlFlags::DUTY.bits(), 0x00);
            tx.chunks(2)
                .skip((1 + NUM_TRANS_IN_UNIT) * dev.idx())
                .skip(1)
                .zip(dev.iter())
                .for_each(|(d, tr)| {
                    let duty = AdvancedDriveDuty::to_duty(&Drive { amp, phase: 0. }, tr.cycle());
                    assert_eq!(d[0], (duty & 0xFF) as u8);
                    assert_eq!(d[1], (duty >> 8) as u8);
                })
        });
    }
}