use super::{GainControlFlags, GainOpDelegate};
use crate::{
fpga::AdvancedDrivePhase,
geometry::{Device, Transducer},
operation::TypeTag,
};
pub struct GainOpAdvancedPhase {}
impl<T: Transducer> GainOpDelegate<T> for GainOpAdvancedPhase {
fn pack(
drives: &std::collections::HashMap<usize, Vec<crate::derive::prelude::Drive>>,
remains: &std::collections::HashMap<usize, usize>,
device: &Device<T>,
tx: &mut [u8],
) -> Result<usize, crate::derive::prelude::AUTDInternalError> {
assert_eq!(remains[&device.idx()], 1);
tx[0] = TypeTag::Gain as u8;
tx[1] = GainControlFlags::NONE.bits();
let d = &drives[&device.idx()];
assert!(tx.len() >= 2 + d.len() * std::mem::size_of::<AdvancedDrivePhase>());
unsafe {
let dst = std::slice::from_raw_parts_mut(
tx[2..].as_mut_ptr() as *mut AdvancedDrivePhase,
d.len(),
);
dst.iter_mut()
.zip(d.iter())
.zip(device.iter().map(|tr| tr.cycle()))
.for_each(|((d, s), c)| d.set(s, c));
}
Ok(2 + d.len() * std::mem::size_of::<AdvancedDrivePhase>())
}
fn init(
geometry: &crate::derive::prelude::Geometry<T>,
) -> Result<std::collections::HashMap<usize, usize>, crate::derive::prelude::AUTDInternalError>
{
Ok(geometry.devices().map(|device| (device.idx(), 1)).collect())
}
}
#[cfg(test)]
mod tests {
use rand::prelude::*;
use super::*;
use crate::{
common::Amplitude,
defined::PI,
derive::prelude::{AUTDInternalError, Drive, GainOp, Operation},
geometry::{tests::create_geometry, AdvancedPhaseTransducer},
operation::tests::{ErrGain, TestGain},
};
const NUM_TRANS_IN_UNIT: usize = 249;
const NUM_DEVICE: usize = 10;
#[test]
fn gain_advanced_phase_op() {
let geometry = create_geometry::<AdvancedPhaseTransducer>(NUM_DEVICE, NUM_TRANS_IN_UNIT);
let mut tx =
vec![0x00u8; (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>()) * NUM_DEVICE];
let mut rng = rand::thread_rng();
let data = geometry
.devices()
.map(|dev| {
(
dev.idx(),
(0..dev.num_transducers())
.map(|_| Drive {
amp: Amplitude::new_clamped(rng.gen_range(0.0..1.0)),
phase: rng.gen_range(0.0..2.0 * PI),
})
.collect(),
)
})
.collect();
let gain = TestGain { data };
let mut op = GainOp::<AdvancedPhaseTransducer, TestGain>::new(gain.clone());
assert!(op.init(&geometry).is_ok());
geometry.devices().for_each(|dev| {
assert_eq!(
op.required_size(dev),
2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<AdvancedDrivePhase>()
)
});
geometry
.devices()
.for_each(|dev| assert_eq!(op.remains(dev), 1));
geometry.devices().for_each(|dev| {
assert!(op
.pack(
dev,
&mut tx[dev.idx() * (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>())..]
)
.is_ok());
op.commit(dev);
});
geometry
.devices()
.for_each(|dev| assert_eq!(op.remains(dev), 0));
geometry.devices().for_each(|dev| {
assert_eq!(
tx[dev.idx() * (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>())],
TypeTag::Gain as u8
);
let flag = tx[dev.idx() * (2 + NUM_TRANS_IN_UNIT * std::mem::size_of::<u16>()) + 1];
assert_eq!(flag & GainControlFlags::LEGACY.bits(), 0x00);
assert_eq!(flag & GainControlFlags::DUTY.bits(), 0x00);
tx.chunks(2)
.skip((1 + NUM_TRANS_IN_UNIT) * dev.idx())
.skip(1)
.zip(gain.data[&dev.idx()].iter())
.zip(dev.iter())
.for_each(|((d, g), tr)| {
let phase = AdvancedDrivePhase::to_phase(g, tr.cycle());
assert_eq!(d[0], (phase & 0xFF) as u8);
assert_eq!(d[1], (phase >> 8) as u8);
})
});
}
#[test]
fn error_gain_advanced_phase() {
let geometry = create_geometry::<AdvancedPhaseTransducer>(NUM_DEVICE, NUM_TRANS_IN_UNIT);
let gain = ErrGain {};
let mut op = GainOp::<AdvancedPhaseTransducer, ErrGain>::new(gain);
assert_eq!(
op.init(&geometry),
Err(AUTDInternalError::GainError("test".to_owned()))
);
}
}