1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * File: advanced_transducer.rs
 * Project: geometry
 * Created Date: 04/05/2022
 * Author: Shun Suzuki
 * -----
 * Last Modified: 04/10/2023
 * Modified By: Shun Suzuki (suzuki@hapis.k.u-tokyo.ac.jp)
 * -----
 * Copyright (c) 2022-2023 Shun Suzuki. All rights reserved.
 *
 */

use crate::{
    defined::float,
    fpga::{FPGA_CLK_FREQ, MAX_CYCLE},
};

use crate::error::AUTDInternalError;

use super::{Matrix4, Transducer, UnitQuaternion, Vector3, Vector4};

pub struct AdvancedTransducer {
    local_idx: usize,
    pos: Vector3,
    rot: UnitQuaternion,
    cycle: u16,
    mod_delay: u16,
    amp_filter: float,
    phase_filter: float,
}

impl Transducer for AdvancedTransducer {
    fn new(local_idx: usize, pos: Vector3, rot: UnitQuaternion) -> Self {
        Self {
            local_idx,
            pos,
            rot,
            cycle: 4096,
            mod_delay: 0,
            amp_filter: 0.,
            phase_filter: 0.,
        }
    }

    fn translate_to(&mut self, pos: Vector3) {
        self.pos = pos;
    }

    fn rotate_to(&mut self, rot: UnitQuaternion) {
        self.rot = rot;
    }

    fn affine(&mut self, t: Vector3, r: UnitQuaternion) {
        let rot_mat: Matrix4 = From::from(r);
        let trans_mat = rot_mat.append_translation(&t);
        let homo = Vector4::new(self.pos[0], self.pos[1], self.pos[2], 1.0);
        let new_pos = trans_mat * homo;
        self.pos = Vector3::new(new_pos[0], new_pos[1], new_pos[2]);
        self.rot = r * self.rot;
    }

    fn position(&self) -> &Vector3 {
        &self.pos
    }

    fn rotation(&self) -> &UnitQuaternion {
        &self.rot
    }

    fn local_idx(&self) -> usize {
        self.local_idx
    }

    fn frequency(&self) -> float {
        FPGA_CLK_FREQ as float / self.cycle as float
    }

    fn mod_delay(&self) -> u16 {
        self.mod_delay
    }

    fn set_mod_delay(&mut self, delay: u16) {
        self.mod_delay = delay;
    }

    fn amp_filter(&self) -> float {
        self.amp_filter
    }

    fn set_amp_filter(&mut self, value: float) {
        self.amp_filter = value;
    }

    fn phase_filter(&self) -> float {
        self.phase_filter
    }

    fn set_phase_filter(&mut self, value: float) {
        self.phase_filter = value;
    }

    fn cycle(&self) -> u16 {
        self.cycle
    }
}

impl AdvancedTransducer {
    /// Set ultrasound cycle
    /// The frequency will be [FPGA_CLK_FREQ] / `cycle`.
    ///
    /// # Arguments
    ///
    /// * `cycle` - Cycle of ultrasound (from 2 to [MAX_CYCLE])
    ///
    pub fn set_cycle(&mut self, cycle: u16) -> Result<(), AUTDInternalError> {
        if cycle > MAX_CYCLE {
            return Err(AUTDInternalError::CycleOutOfRange(cycle));
        }
        self.cycle = cycle;
        Ok(())
    }

    /// Set ultrasound frequency
    ///
    /// # Arguments
    ///
    /// * `freq` - frequency of ultrasound. The frequency closest to `freq` from the possible frequencies is set.
    ///
    pub fn set_frequency(&mut self, freq: float) -> Result<(), AUTDInternalError> {
        let cycle = (FPGA_CLK_FREQ as float / freq).round() as u16;
        self.set_cycle(cycle)
    }
}

#[cfg(test)]
mod tests {
    use crate::defined::PI;
    use assert_approx_eq::assert_approx_eq;

    use super::*;

    macro_rules! assert_vec3_approx_eq {
        ($a:expr, $b:expr) => {
            assert_approx_eq!($a.x, $b.x, 1e-3);
            assert_approx_eq!($a.y, $b.y, 1e-3);
            assert_approx_eq!($a.z, $b.z, 1e-3);
        };
    }

    #[test]
    fn affine() {
        let mut tr = AdvancedTransducer::new(0, Vector3::zeros(), UnitQuaternion::identity());

        let t = Vector3::new(40., 50., 60.);
        let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
            * UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
            * UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
        tr.affine(t, rot);

        let expect_x = Vector3::new(0., 1., 0.);
        let expect_y = Vector3::new(-1., 0., 0.);
        let expect_z = Vector3::new(0., 0., 1.);
        assert_vec3_approx_eq!(expect_x, tr.x_direction());
        assert_vec3_approx_eq!(expect_y, tr.y_direction());
        assert_vec3_approx_eq!(expect_z, tr.z_direction());

        let expect_pos = Vector3::zeros() + t;
        assert_vec3_approx_eq!(expect_pos, tr.position());
    }

    #[test]
    fn cycle() {
        let mut tr = AdvancedTransducer::new(0, Vector3::zeros(), UnitQuaternion::identity());

        let cycle = 2000;
        let res = tr.set_cycle(cycle);
        assert!(res.is_ok());
        assert_eq!(cycle, tr.cycle());

        let cycle = MAX_CYCLE;
        let res = tr.set_cycle(cycle);
        assert!(res.is_ok());
        assert_eq!(cycle, tr.cycle());

        let cycle = MAX_CYCLE + 1;
        let res = tr.set_cycle(cycle);
        assert!(res.is_err());
    }

    #[test]
    fn freq() {
        let mut tr = AdvancedTransducer::new(0, Vector3::zeros(), UnitQuaternion::identity());

        let freq = 70e3;
        let res = tr.set_frequency(freq);
        assert!(res.is_ok());
        assert_approx_eq!(freq, tr.frequency(), 100.);

        let freq = 20e3;
        let res = tr.set_frequency(freq);
        assert!(res.is_err());
    }
}