1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
 * File: legacy_transducer.rs
 * Project: geometry
 * Created Date: 04/05/2022
 * Author: Shun Suzuki
 * -----
 * Last Modified: 05/09/2023
 * Modified By: Shun Suzuki (suzuki@hapis.k.u-tokyo.ac.jp)
 * -----
 * Copyright (c) 2022-2023 Shun Suzuki. All rights reserved.
 *
 */

use super::{Matrix4, Transducer, UnitQuaternion, Vector3, Vector4};

use crate::defined::float;

pub struct LegacyTransducer {
    local_idx: usize,
    pos: Vector3,
    rot: UnitQuaternion,
    mod_delay: u16,
    amp_filter: float,
    phase_filter: float,
}

impl Transducer for LegacyTransducer {
    fn new(local_idx: usize, pos: Vector3, rot: UnitQuaternion) -> Self {
        Self {
            local_idx,
            pos,
            rot,
            mod_delay: 0,
            amp_filter: 0.,
            phase_filter: 0.,
        }
    }

    fn affine(&mut self, t: Vector3, r: UnitQuaternion) {
        let rot_mat: Matrix4 = From::from(r);
        let trans_mat = rot_mat.append_translation(&t);
        let homo = Vector4::new(self.pos[0], self.pos[1], self.pos[2], 1.0);
        let new_pos = trans_mat * homo;
        self.pos = Vector3::new(new_pos[0], new_pos[1], new_pos[2]);
        self.rot = r * self.rot;
    }

    fn position(&self) -> &Vector3 {
        &self.pos
    }

    fn rotation(&self) -> &UnitQuaternion {
        &self.rot
    }

    fn local_idx(&self) -> usize {
        self.local_idx
    }

    fn frequency(&self) -> float {
        40e3
    }

    fn mod_delay(&self) -> u16 {
        self.mod_delay
    }

    fn set_mod_delay(&mut self, delay: u16) {
        self.mod_delay = delay;
    }

    fn amp_filter(&self) -> float {
        self.amp_filter
    }

    fn set_amp_filter(&mut self, value: float) {
        self.amp_filter = value;
    }

    fn phase_filter(&self) -> float {
        self.phase_filter
    }

    fn set_phase_filter(&mut self, value: float) {
        self.phase_filter = value;
    }

    fn cycle(&self) -> u16 {
        4096
    }
}

#[cfg(test)]
mod tests {
    use crate::defined::PI;
    use assert_approx_eq::assert_approx_eq;

    use super::*;

    macro_rules! assert_vec3_approx_eq {
        ($a:expr, $b:expr) => {
            assert_approx_eq!($a.x, $b.x, 1e-3);
            assert_approx_eq!($a.y, $b.y, 1e-3);
            assert_approx_eq!($a.z, $b.z, 1e-3);
        };
    }

    #[test]
    fn affine() {
        let mut tr = LegacyTransducer::new(0, Vector3::zeros(), UnitQuaternion::identity());

        let t = Vector3::new(40., 50., 60.);
        let rot = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.)
            * UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 0.)
            * UnitQuaternion::from_axis_angle(&Vector3::z_axis(), PI / 2.);
        tr.affine(t, rot);

        let expect_x = Vector3::new(0., 1., 0.);
        let expect_y = Vector3::new(-1., 0., 0.);
        let expect_z = Vector3::new(0., 0., 1.);
        assert_vec3_approx_eq!(expect_x, tr.x_direction());
        assert_vec3_approx_eq!(expect_y, tr.y_direction());
        assert_vec3_approx_eq!(expect_z, tr.z_direction());

        let expect_pos = Vector3::zeros() + t;
        assert_vec3_approx_eq!(expect_pos, tr.position());
    }

    #[test]
    fn cycle() {
        let tr = LegacyTransducer::new(0, Vector3::zeros(), UnitQuaternion::identity());
        assert_eq!(4096, tr.cycle());
    }

    #[test]
    fn freq() {
        let tr = LegacyTransducer::new(0, Vector3::zeros(), UnitQuaternion::identity());
        assert_approx_eq!(40e3, tr.frequency());
    }
}