1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * File: mod.rs
 * Project: geometry
 * Created Date: 04/05/2022
 * Author: Shun Suzuki
 * -----
 * Last Modified: 12/09/2023
 * Modified By: Shun Suzuki (suzuki@hapis.k.u-tokyo.ac.jp)
 * -----
 * Copyright (c) 2022-2023 Shun Suzuki. All rights reserved.
 *
 */

mod advanced_phase_transducer;
mod advanced_transducer;
pub(crate) mod device;
mod legacy_transducer;
mod transducer;

use crate::defined::float;

pub type Vector3 = nalgebra::Vector3<float>;
pub type UnitVector3 = nalgebra::UnitVector3<float>;
pub type Vector4 = nalgebra::Vector4<float>;
pub type Quaternion = nalgebra::Quaternion<float>;
pub type UnitQuaternion = nalgebra::UnitQuaternion<float>;
pub type Matrix3 = nalgebra::Matrix3<float>;
pub type Matrix4 = nalgebra::Matrix4<float>;
pub type Affine = nalgebra::Affine3<float>;

pub use advanced_phase_transducer::*;
pub use advanced_transducer::*;
pub use device::*;
pub use legacy_transducer::*;
pub use transducer::*;

use std::ops::{Deref, DerefMut};

#[derive(Default)]
pub struct Geometry<T: Transducer> {
    pub(crate) devices: Vec<Device<T>>,
}

impl<T: Transducer> Geometry<T> {
    #[doc(hidden)]
    pub fn new(devices: Vec<Device<T>>) -> Geometry<T> {
        Self { devices }
    }

    /// Get the number of devices
    pub fn num_devices(&self) -> usize {
        self.devices.len()
    }

    /// Get the number of total transducers
    pub fn num_transducers(&self) -> usize {
        self.devices.iter().map(|dev| dev.num_transducers()).sum()
    }

    /// Get center position of all devices
    pub fn center(&self) -> Vector3 {
        self.devices.iter().map(|d| d.center()).sum::<Vector3>() / self.devices.len() as float
    }

    pub fn devices(&self) -> impl Iterator<Item = &Device<T>> {
        self.devices.iter().filter(|dev| dev.enable)
    }

    pub fn devices_mut(&mut self) -> impl Iterator<Item = &mut Device<T>> {
        self.devices.iter_mut().filter(|dev| dev.enable)
    }

    /// Set speed of sound of all devices from temperature
    /// This is equivalent to `set_sound_speed_from_temp_with(temp, 1.4, 8.314463, 28.9647e-3)`
    ///
    /// # Arguments
    ///
    /// * `temp` - Temperature in Celsius
    ///
    pub fn set_sound_speed_from_temp(&mut self, temp: float) {
        self.set_sound_speed_from_temp_with(temp, 1.4, 8.314_463, 28.9647e-3);
    }

    /// Set speed of sound from temperature with air parameter
    ///
    /// # Arguments
    ///
    /// * `temp` - Temperature in Celsius
    /// * `k` - Ratio of specific heat
    /// * `r` - Gas constant
    /// * `m` - Molar mass
    ///
    pub fn set_sound_speed_from_temp_with(&mut self, temp: float, k: float, r: float, m: float) {
        self.devices
            .iter_mut()
            .for_each(|dev| dev.set_sound_speed_from_temp_with(temp, k, r, m));
    }
}

impl<T: Transducer> Deref for Geometry<T> {
    type Target = [Device<T>];

    fn deref(&self) -> &Self::Target {
        &self.devices
    }
}

impl<T: Transducer> DerefMut for Geometry<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.devices
    }
}

#[cfg(test)]
pub mod tests {
    use super::*;

    macro_rules! assert_approx_eq_vec3 {
        ($a:expr, $b:expr) => {
            assert_approx_eq::assert_approx_eq!($a.x, $b.x, 1e-3);
            assert_approx_eq::assert_approx_eq!($a.y, $b.y, 1e-3);
            assert_approx_eq::assert_approx_eq!($a.z, $b.z, 1e-3);
        };
    }

    fn create_device<T: Transducer>(idx: usize, n: usize) -> Device<T> {
        Device::new(
            idx,
            (0..n)
                .map(|i| T::new(i, Vector3::zeros(), UnitQuaternion::identity()))
                .collect(),
        )
    }

    pub fn create_geometry<T: Transducer>(n: usize, num_trans_in_unit: usize) -> Geometry<T> {
        Geometry::new(
            (0..n)
                .map(|i| create_device::<T>(i, num_trans_in_unit))
                .collect(),
        )
    }

    #[test]
    fn geometry_num_devices() {
        let geometry = Geometry::new(vec![create_device::<LegacyTransducer>(0, 249)]);
        assert_eq!(geometry.num_devices(), 1);

        let geometry = Geometry::new(vec![
            create_device::<LegacyTransducer>(0, 249),
            create_device::<LegacyTransducer>(0, 249),
        ]);
        assert_eq!(geometry.num_devices(), 2);
    }

    #[test]
    fn geometry_num_transducers() {
        let geometry = Geometry::new(vec![create_device::<LegacyTransducer>(0, 249)]);
        assert_eq!(geometry.num_transducers(), 249);

        let geometry = Geometry::new(vec![
            create_device::<LegacyTransducer>(0, 249),
            create_device::<LegacyTransducer>(0, 249),
        ]);
        assert_eq!(geometry.num_transducers(), 249 * 2);
    }

    #[test]
    fn center() {
        let transducers = itertools::iproduct!((0..18), (0..14))
            .enumerate()
            .map(|(i, (y, x))| {
                LegacyTransducer::new(
                    i,
                    10.16 * Vector3::new(x as float, y as float, 0.),
                    UnitQuaternion::identity(),
                )
            })
            .collect::<Vec<_>>();
        let device0 = Device::new(0, transducers);

        let transducers = itertools::iproduct!((0..18), (0..14))
            .enumerate()
            .map(|(i, (y, x))| {
                LegacyTransducer::new(
                    i,
                    10.16 * Vector3::new(x as float, y as float, 0.) + Vector3::new(10., 20., 30.),
                    UnitQuaternion::identity(),
                )
            })
            .collect::<Vec<_>>();
        let device1 = Device::new(1, transducers);

        let geometry = Geometry::new(vec![device0, device1]);

        let expect = geometry.iter().map(|dev| dev.center()).sum::<Vector3>() / 2.0;

        assert_approx_eq_vec3!(geometry.center(), expect);
    }
}