1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
 * File: modulation.rs
 * Project: operation
 * Created Date: 08/01/2023
 * Author: Shun Suzuki
 * -----
 * Last Modified: 18/05/2023
 * Modified By: Shun Suzuki (suzuki@hapis.k.u-tokyo.ac.jp)
 * -----
 * Copyright (c) 2023 Shun Suzuki. All rights reserved.
 *
 */

use super::Operation;
use crate::{
    float, CPUControlFlags, DriverError, TxDatagram, FPGA_SUB_CLK_FREQ_DIV, MOD_BUF_SIZE_MAX,
    MOD_HEADER_INITIAL_DATA_SIZE, MOD_HEADER_SUBSEQUENT_DATA_SIZE, PI, SAMPLING_FREQ_DIV_MIN,
};

pub struct Modulation {
    mod_data: Vec<u8>,
    sent: usize,
    freq_div: u32,
}

impl Modulation {
    pub fn new(mod_data: Vec<float>, freq_div: u32) -> Self {
        Self {
            mod_data: mod_data.into_iter().map(Self::to_duty).collect(),
            sent: 0,
            freq_div,
        }
    }

    pub fn to_duty(amp: float) -> u8 {
        (amp.clamp(0., 1.).asin() * 2.0 / PI * 255.0) as u8
    }
}

impl Operation for Modulation {
    fn pack(&mut self, tx: &mut TxDatagram) -> Result<(), DriverError> {
        if self.mod_data.len() < 2 || self.mod_data.len() > MOD_BUF_SIZE_MAX {
            return Err(DriverError::ModulationSizeOutOfRange(self.mod_data.len()));
        }

        tx.header_mut().cpu_flag.set(CPUControlFlags::MOD, true);
        tx.header_mut().cpu_flag.remove(CPUControlFlags::MOD_BEGIN);
        tx.header_mut().cpu_flag.remove(CPUControlFlags::MOD_END);

        let is_first_frame = self.sent == 0;
        let max_size = if is_first_frame {
            MOD_HEADER_INITIAL_DATA_SIZE
        } else {
            MOD_HEADER_SUBSEQUENT_DATA_SIZE
        };
        let mod_size = (self.mod_data.len() - self.sent).min(max_size);
        if mod_size == 0 {
            tx.header_mut().cpu_flag.remove(CPUControlFlags::MOD);
            return Ok(());
        }
        let is_last_frame = self.sent + mod_size == self.mod_data.len();

        tx.header_mut().size = mod_size as _;

        if is_first_frame {
            let freq_div = self.freq_div * FPGA_SUB_CLK_FREQ_DIV as u32;
            if freq_div < SAMPLING_FREQ_DIV_MIN {
                return Err(DriverError::ModFreqDivOutOfRange(self.freq_div));
            }
            tx.header_mut()
                .cpu_flag
                .set(CPUControlFlags::MOD_BEGIN, true);
            tx.header_mut().mod_initial_mut().freq_div = freq_div;
            tx.header_mut().mod_initial_mut().data[0..mod_size]
                .copy_from_slice(&self.mod_data[self.sent..self.sent + mod_size]);
        } else {
            tx.header_mut().mod_subsequent_mut().data[0..mod_size]
                .copy_from_slice(&self.mod_data[self.sent..self.sent + mod_size]);
        }

        if is_last_frame {
            tx.header_mut().cpu_flag.set(CPUControlFlags::MOD_END, true);
        }

        self.sent += mod_size;

        Ok(())
    }

    fn init(&mut self) {
        self.sent = 0;
    }

    fn is_finished(&self) -> bool {
        self.sent == self.mod_data.len()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::float;

    const NUM_TRANS_IN_UNIT: usize = 249;

    #[test]
    fn modulation() {
        let mut tx = TxDatagram::new(&[
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
            NUM_TRANS_IN_UNIT,
        ]);

        let size = MOD_HEADER_INITIAL_DATA_SIZE + MOD_HEADER_SUBSEQUENT_DATA_SIZE + 1;
        let mod_data = (0..size)
            .map(|i| (i as float) / (size as float))
            .collect::<Vec<_>>();

        let mut op = Modulation::new(mod_data.clone(), 512);
        op.init();
        assert!(!op.is_finished());

        op.pack(&mut tx).unwrap();
        assert!(!op.is_finished());
        assert!(tx.header().cpu_flag.contains(CPUControlFlags::MOD));
        assert!(tx.header().cpu_flag.contains(CPUControlFlags::MOD_BEGIN));
        assert!(!tx.header().cpu_flag.contains(CPUControlFlags::MOD_END));
        assert_eq!(tx.header().size as usize, MOD_HEADER_INITIAL_DATA_SIZE);
        assert_eq!(tx.header().mod_initial().freq_div, 4096);
        for (&h, &d) in tx.header().mod_initial().data.iter().zip(mod_data.iter()) {
            assert_eq!(h, Modulation::to_duty(d));
        }

        op.pack(&mut tx).unwrap();
        assert!(!op.is_finished());
        assert!(tx.header().cpu_flag.contains(CPUControlFlags::MOD));
        assert!(!tx.header().cpu_flag.contains(CPUControlFlags::MOD_BEGIN));
        assert!(!tx.header().cpu_flag.contains(CPUControlFlags::MOD_END));
        assert_eq!(tx.header().size as usize, MOD_HEADER_SUBSEQUENT_DATA_SIZE);
        for i in 0..MOD_HEADER_SUBSEQUENT_DATA_SIZE {
            assert_eq!(
                tx.header().mod_subsequent().data[i],
                Modulation::to_duty(mod_data[MOD_HEADER_INITIAL_DATA_SIZE + i])
            );
        }

        op.pack(&mut tx).unwrap();
        assert!(op.is_finished());
        assert!(tx.header().cpu_flag.contains(CPUControlFlags::MOD));
        assert!(!tx.header().cpu_flag.contains(CPUControlFlags::MOD_BEGIN));
        assert!(tx.header().cpu_flag.contains(CPUControlFlags::MOD_END));
        assert_eq!(tx.header().size as usize, 1);
        for i in 0..1 {
            assert_eq!(
                tx.header().mod_subsequent().data[i],
                Modulation::to_duty(
                    mod_data[MOD_HEADER_INITIAL_DATA_SIZE + MOD_HEADER_SUBSEQUENT_DATA_SIZE + i]
                )
            );
        }

        op.init();
        assert!(!op.is_finished());

        let mut op = Modulation::new(mod_data, 511);
        op.init();
        assert!(op.pack(&mut tx).is_err());

        let mut op = Modulation::new(vec![0.0; MOD_BUF_SIZE_MAX + 1], 512);
        op.init();
        assert!(op.pack(&mut tx).is_err());
    }
}