augurs_mstl/trend.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
//! Trend models.
//!
//! Contains the [`TrendModel`] trait and an implementation of a basic
//! naive trend model.
// TODO: decide where this should live. Perhaps it's more general than just MSTL?
use std::{
borrow::Cow,
fmt::{self, Debug},
};
use crate::{Forecast, ForecastIntervals};
/// A trend model.
///
/// Trend models are used to model the trend component of a time series.
/// Examples implemented in other languages include ARIMA, Theta and ETS.
///
/// You can implement this trait for your own trend models.
pub trait TrendModel: Debug {
/// Return the name of the trend model.
fn name(&self) -> Cow<'_, str>;
/// Fit the model to the given time series.
///
/// This method is called once before any calls to `predict` or `predict_in_sample`.
///
/// Implementations should store any state required for prediction in the struct itself.
fn fit(
&self,
y: &[f64],
) -> Result<
Box<dyn FittedTrendModel + Sync + Send>,
Box<dyn std::error::Error + Send + Sync + 'static>,
>;
}
/// A fitted trend model.
pub trait FittedTrendModel: Debug {
/// Produce a forecast for the next `horizon` time points.
///
/// The `level` parameter specifies the confidence level for the prediction intervals.
/// Where possible, implementations should provide prediction intervals
/// alongside the point forecasts if `level` is not `None`.
fn predict_inplace(
&self,
horizon: usize,
level: Option<f64>,
forecast: &mut Forecast,
) -> Result<(), Box<dyn std::error::Error + Send + Sync + 'static>>;
/// Produce in-sample predictions.
///
/// In-sample predictions are used to assess the fit of the model to the training data.
///
/// The `level` parameter specifies the confidence level for the prediction intervals.
/// Where possible, implementations should provide prediction intervals
/// alongside the point forecasts if `level` is not `None`.
fn predict_in_sample_inplace(
&self,
level: Option<f64>,
forecast: &mut Forecast,
) -> Result<(), Box<dyn std::error::Error + Send + Sync + 'static>>;
/// Return the n-ahead predictions for the given horizon.
///
/// The predictions are point forecasts and optionally include
/// prediction intervals at the specified `level`.
///
/// `level` should be a float between 0 and 1 representing the
/// confidence level of the prediction intervals. If `None` then
/// no prediction intervals are returned.
///
/// # Errors
///
/// Any errors returned by the trend model are propagated.
fn predict(
&self,
horizon: usize,
level: Option<f64>,
) -> Result<Forecast, Box<dyn std::error::Error + Send + Sync + 'static>> {
let mut forecast = level
.map(|l| Forecast::with_capacity_and_level(horizon, l))
.unwrap_or_else(|| Forecast::with_capacity(horizon));
self.predict_inplace(horizon, level, &mut forecast)?;
Ok(forecast)
}
/// Return the in-sample predictions.
///
/// The predictions are point forecasts and optionally include
/// prediction intervals at the specified `level`.
///
/// `level` should be a float between 0 and 1 representing the
/// confidence level of the prediction intervals. If `None` then
/// no prediction intervals are returned.
///
/// # Errors
///
/// Any errors returned by the trend model are propagated.
fn predict_in_sample(
&self,
level: Option<f64>,
) -> Result<Forecast, Box<dyn std::error::Error + Send + Sync + 'static>> {
let mut forecast = level
.zip(self.training_data_size())
.map(|(l, c)| Forecast::with_capacity_and_level(c, l))
.unwrap_or_else(|| Forecast::with_capacity(0));
self.predict_in_sample_inplace(level, &mut forecast)?;
Ok(forecast)
}
/// Return the number of training data points used to fit the model.
fn training_data_size(&self) -> Option<usize>;
}
impl<T: TrendModel + ?Sized> TrendModel for Box<T> {
fn name(&self) -> Cow<'_, str> {
(**self).name()
}
fn fit(
&self,
y: &[f64],
) -> Result<
Box<dyn FittedTrendModel + Sync + Send>,
Box<dyn std::error::Error + Send + Sync + 'static>,
> {
(**self).fit(y)
}
}
impl<T: FittedTrendModel + ?Sized> FittedTrendModel for Box<T> {
fn predict_inplace(
&self,
horizon: usize,
level: Option<f64>,
forecast: &mut Forecast,
) -> Result<(), Box<dyn std::error::Error + Send + Sync + 'static>> {
(**self).predict_inplace(horizon, level, forecast)
}
fn predict_in_sample_inplace(
&self,
level: Option<f64>,
forecast: &mut Forecast,
) -> Result<(), Box<dyn std::error::Error + Send + Sync + 'static>> {
(**self).predict_in_sample_inplace(level, forecast)
}
fn training_data_size(&self) -> Option<usize> {
(**self).training_data_size()
}
}
/// A naive trend model that predicts the last value in the training set
/// for all future time points.
#[derive(Clone, Default)]
pub struct NaiveTrend {
fitted: Option<Vec<f64>>,
last_value: Option<f64>,
sigma_squared: Option<f64>,
}
impl fmt::Debug for NaiveTrend {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("NaiveTrend")
.field(
"y",
&self
.fitted
.as_ref()
.map(|y| format!("<omitted vec, length {}>", y.len())),
)
.field("last_value", &self.last_value)
.field("sigma", &self.sigma_squared)
.finish()
}
}
impl NaiveTrend {
/// Create a new naive trend model.
pub const fn new() -> Self {
Self {
fitted: None,
last_value: None,
sigma_squared: None,
}
}
}
impl TrendModel for NaiveTrend {
fn name(&self) -> Cow<'_, str> {
Cow::Borrowed("Naive")
}
fn fit(
&self,
y: &[f64],
) -> Result<
Box<dyn FittedTrendModel + Sync + Send>,
Box<dyn std::error::Error + Send + Sync + 'static>,
> {
let last_value = y[y.len() - 1];
let fitted: Vec<f64> = std::iter::once(f64::NAN)
.chain(y.iter().copied())
.take(y.len())
.collect();
let sigma_squared = y
.iter()
.zip(&fitted)
.filter_map(|(y, f)| {
if f.is_nan() {
None
} else {
Some((y - f).powi(2))
}
})
.sum::<f64>()
/ (y.len() - 1) as f64;
Ok(Box::new(NaiveTrendFitted {
last_value,
fitted,
sigma_squared,
}))
}
}
#[derive(Debug, Clone)]
struct NaiveTrendFitted {
last_value: f64,
sigma_squared: f64,
fitted: Vec<f64>,
}
impl NaiveTrendFitted {
fn prediction_intervals(
&self,
preds: impl Iterator<Item = f64>,
level: f64,
sigma: impl Iterator<Item = f64>,
intervals: &mut ForecastIntervals,
) {
intervals.level = level;
let z = distrs::Normal::ppf(0.5 + level / 2.0, 0.0, 1.0);
(intervals.lower, intervals.upper) = preds
.zip(sigma)
.map(|(p, s)| (p - z * s, p + z * s))
.unzip();
}
}
impl FittedTrendModel for NaiveTrendFitted {
fn predict_inplace(
&self,
horizon: usize,
level: Option<f64>,
forecast: &mut Forecast,
) -> Result<(), Box<dyn std::error::Error + Send + Sync + 'static>> {
forecast.point = vec![self.last_value; horizon];
if let Some(level) = level {
let sigmas = (1..horizon + 1).map(|step| ((step as f64) * self.sigma_squared).sqrt());
let intervals = forecast
.intervals
.get_or_insert_with(|| ForecastIntervals::with_capacity(level, horizon));
self.prediction_intervals(std::iter::repeat(self.last_value), level, sigmas, intervals);
}
Ok(())
}
fn predict_in_sample_inplace(
&self,
level: Option<f64>,
forecast: &mut Forecast,
) -> Result<(), Box<dyn std::error::Error + Send + Sync + 'static>> {
forecast.point.clone_from(&self.fitted);
if let Some(level) = level {
let intervals = forecast
.intervals
.get_or_insert_with(|| ForecastIntervals::with_capacity(level, self.fitted.len()));
self.prediction_intervals(
self.fitted.iter().copied(),
level,
std::iter::repeat(self.sigma_squared.sqrt()),
intervals,
);
}
Ok(())
}
fn training_data_size(&self) -> Option<usize> {
Some(self.fitted.len())
}
}