1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
#![doc = include_str!("../README.md")]
#![warn(
missing_docs,
missing_debug_implementations,
rust_2018_idioms,
unreachable_pub
)]
use std::marker::PhantomData;
use stlrs::MstlResult;
use tracing::instrument;
use augurs_core::{Forecast, ForecastIntervals};
// mod approx;
// pub mod mstl;
// mod stationarity;
mod trend;
// mod utils;
pub use crate::trend::{NaiveTrend, TrendModel};
/// A marker struct indicating that a model is fit.
#[derive(Debug, Clone, Copy)]
pub struct Fit;
/// A marker struct indicating that a model is unfit.
#[derive(Debug, Clone, Copy)]
pub struct Unfit;
/// Errors that can occur when using this crate.
#[derive(Debug, thiserror::Error)]
pub enum Error {
/// An error occurred while running the MSTL algorithm.
#[error("fitting MSTL: {0}")]
MSTL(String),
/// An error occurred while running the STL algorithm.
#[error("running STL: {0}")]
STL(#[from] stlrs::Error),
/// An error occurred while fitting or predicting using the trend model.
#[error("trend model error: {0}")]
TrendModel(Box<dyn std::error::Error + Send + Sync + 'static>),
}
type Result<T> = std::result::Result<T, Error>;
/// A model that uses the [MSTL] to decompose a time series into trend,
/// seasonal and remainder components, and then uses a trend model to
/// forecast the trend component.
///
/// [MSTL]: https://arxiv.org/abs/2107.13462
#[derive(Debug)]
pub struct MSTLModel<T, F> {
/// Periodicity of the seasonal components.
periods: Vec<usize>,
mstl_params: stlrs::MstlParams,
state: PhantomData<F>,
fit: Option<MstlResult>,
trend_model: T,
}
impl MSTLModel<NaiveTrend, Unfit> {
/// Create a new MSTL model with a naive trend model.
///
/// The naive trend model predicts the last value in the training set
/// and so is unlikely to be useful for real applications, but it can
/// be useful for testing, benchmarking and pedagogy.
pub fn naive(periods: Vec<usize>) -> Self {
Self::new(periods, NaiveTrend::new())
}
}
impl<T: TrendModel, F> MSTLModel<T, F> {
/// Return a reference to the trend model.
pub fn trend_model(&self) -> &T {
&self.trend_model
}
}
impl<T: TrendModel> MSTLModel<T, Unfit> {
/// Create a new MSTL model with the given trend model.
pub fn new(periods: Vec<usize>, trend_model: T) -> Self {
Self {
periods,
state: PhantomData,
mstl_params: stlrs::MstlParams::new(),
fit: None,
trend_model,
}
}
/// Set the parameters for the MSTL algorithm.
///
/// This can be used to control the parameters for the inner STL algorithm
/// by using [`MstlParams::stl_params`].
pub fn mstl_params(mut self, params: stlrs::MstlParams) -> Self {
self.mstl_params = params;
self
}
/// Fit the model to the given time series.
///
/// # Errors
///
/// If no periods are specified, or if all periods are greater than
/// half the length of the time series, then an error is returned.
///
/// Any errors returned by the STL algorithm or trend model
/// are also propagated.
#[instrument(skip_all)]
pub fn fit(mut self, y: &[f64]) -> Result<MSTLModel<T, Fit>> {
let y = y.iter().copied().map(|y| y as f32).collect::<Vec<_>>();
let fit = self.mstl_params.fit(&y, &self.periods)?;
// Determine the differencing term for the trend component.
let trend = fit.trend();
let residual = fit.remainder();
let deseasonalised = trend
.iter()
.zip(residual)
.map(|(t, r)| (t + r) as f64)
.collect::<Vec<_>>();
self.trend_model
.fit(&deseasonalised)
.map_err(Error::TrendModel)?;
tracing::trace!(
trend_model = ?self.trend_model,
"found best trend model",
);
Ok(MSTLModel {
periods: self.periods,
mstl_params: self.mstl_params,
state: PhantomData,
fit: Some(fit),
trend_model: self.trend_model,
})
}
}
impl<T: TrendModel> MSTLModel<T, Fit> {
/// Return the n-ahead predictions for the given horizon.
///
/// The predictions are point forecasts and optionally include
/// prediction intervals at the specified `level`.
///
/// `level` should be a float between 0 and 1 representing the
/// confidence level of the prediction intervals. If `None` then
/// no prediction intervals are returned.
///
/// # Errors
///
/// Any errors returned by the trend model are propagated.
pub fn predict(&self, horizon: usize, level: impl Into<Option<f64>>) -> Result<Forecast> {
self.predict_impl(horizon, level.into())
}
fn predict_impl(&self, horizon: usize, level: Option<f64>) -> Result<Forecast> {
if horizon == 0 {
return Ok(Forecast {
point: vec![],
intervals: level.map(ForecastIntervals::empty),
});
}
let mut out_of_sample = self
.trend_model
.predict(horizon, level)
.map_err(Error::TrendModel)?;
self.add_seasonal_out_of_sample(&mut out_of_sample);
Ok(out_of_sample)
}
/// Return the in-sample predictions.
///
/// The predictions are point forecasts and optionally include
/// prediction intervals at the specified `level`.
///
/// `level` should be a float between 0 and 1 representing the
/// confidence level of the prediction intervals. If `None` then
/// no prediction intervals are returned.
///
/// # Errors
///
/// Any errors returned by the trend model are propagated.
pub fn predict_in_sample(&self, level: impl Into<Option<f64>>) -> Result<Forecast> {
self.predict_in_sample_impl(level.into())
}
fn predict_in_sample_impl(&self, level: Option<f64>) -> Result<Forecast> {
let mut in_sample = self
.trend_model
.predict_in_sample(level)
.map_err(Error::TrendModel)?;
self.add_seasonal_in_sample(&mut in_sample);
Ok(in_sample)
}
fn add_seasonal_in_sample(&self, trend: &mut Forecast) {
self.fit().seasonal().iter().for_each(|component| {
let period_contributions = component.iter().zip(trend.point.iter_mut());
match &mut trend.intervals {
None => period_contributions.for_each(|(c, p)| *p += *c as f64),
Some(ForecastIntervals {
ref mut lower,
ref mut upper,
..
}) => {
period_contributions
.zip(lower.iter_mut())
.zip(upper.iter_mut())
.for_each(|(((c, p), l), u)| {
*p += *c as f64;
*l += *c as f64;
*u += *c as f64;
});
}
}
});
}
fn add_seasonal_out_of_sample(&self, trend: &mut Forecast) {
self.periods
.iter()
.zip(self.fit().seasonal())
.for_each(|(period, component)| {
// For each seasonal period we're going to create a cycle iterator
// which will repeat the seasonal component every `period` steps.
// We'll zip it up with the trend point estimates and add the
// contribution of the seasonal component to the trend.
// If there are intervals, we'll also add the contribution to those.
let period_contributions = component
.iter()
.copied()
.skip(component.len() - period)
.cycle()
.zip(trend.point.iter_mut());
match &mut trend.intervals {
None => period_contributions.for_each(|(c, p)| *p += c as f64),
Some(ForecastIntervals {
ref mut lower,
ref mut upper,
..
}) => {
period_contributions
.zip(lower.iter_mut())
.zip(upper.iter_mut())
.for_each(|(((c, p), l), u)| {
*p += c as f64;
*l += c as f64;
*u += c as f64;
});
}
}
});
}
/// Return the MSTL fit of the training data.
pub fn fit(&self) -> &MstlResult {
self.fit.as_ref().unwrap()
}
}
#[cfg(test)]
mod tests {
use assert_approx_eq::assert_approx_eq;
use augurs_testing::data::VIC_ELEC;
use crate::{trend::NaiveTrend, ForecastIntervals, MSTLModel};
#[track_caller]
fn assert_all_close(actual: &[f64], expected: &[f64]) {
for (actual, expected) in actual.iter().zip(expected) {
if actual.is_nan() {
assert!(expected.is_nan());
} else {
assert_approx_eq!(actual, expected, 1e-1);
}
}
}
#[test]
fn results_match_r() {
let y = VIC_ELEC.clone();
let mut stl_params = stlrs::params();
stl_params
.seasonal_degree(0)
.seasonal_jump(1)
.trend_degree(1)
.trend_jump(1)
.low_pass_degree(1)
.inner_loops(2)
.outer_loops(0);
let mut mstl_params = stlrs::MstlParams::new();
mstl_params.stl_params(stl_params);
let periods = vec![24, 24 * 7];
let trend_model = NaiveTrend::new();
let mstl = MSTLModel::new(periods, trend_model).mstl_params(mstl_params);
let fit = mstl.fit(&y).unwrap();
let in_sample = fit.predict_in_sample(0.95).unwrap();
let expected_in_sample = vec![
f64::NAN,
7952.216,
7269.439,
6878.110,
6606.999,
6402.581,
6659.523,
7457.488,
8111.359,
8693.762,
9255.807,
9870.213,
];
assert_eq!(in_sample.point.len(), y.len());
assert_all_close(&in_sample.point, &expected_in_sample);
let out_of_sample = fit.predict(10, 0.95).unwrap();
let expected_out_of_sample: Vec<f64> = vec![
8920.670, 8874.234, 8215.508, 7782.726, 7697.259, 8216.241, 9664.907, 10914.452,
11536.929, 11664.737,
];
let expected_out_of_sample_lower = vec![
8700.984, 8563.551, 7835.001, 7343.354, 7206.026, 7678.122, 9083.672, 10293.087,
10877.871, 10970.029,
];
let expected_out_of_sample_upper = vec![
9140.356, 9184.917, 8596.016, 8222.098, 8188.491, 8754.359, 10246.141, 11535.818,
12195.987, 12359.445,
];
assert_eq!(out_of_sample.point.len(), 10);
assert_all_close(&out_of_sample.point, &expected_out_of_sample);
let ForecastIntervals { lower, upper, .. } = out_of_sample.intervals.unwrap();
assert_eq!(lower.len(), 10);
assert_eq!(upper.len(), 10);
assert_all_close(&lower, &expected_out_of_sample_lower);
assert_all_close(&upper, &expected_out_of_sample_upper);
}
#[test]
fn predict_zero_horizon() {
let y = VIC_ELEC.clone();
let mut stl_params = stlrs::params();
stl_params
.seasonal_degree(0)
.seasonal_jump(1)
.trend_degree(1)
.trend_jump(1)
.low_pass_degree(1)
.inner_loops(2)
.outer_loops(0);
let mut mstl_params = stlrs::MstlParams::new();
mstl_params.stl_params(stl_params);
let periods = vec![24, 24 * 7];
let trend_model = NaiveTrend::new();
let mstl = MSTLModel::new(periods, trend_model).mstl_params(mstl_params);
let fit = mstl.fit(&y).unwrap();
let forecast = fit.predict(0, 0.95).unwrap();
assert!(forecast.point.is_empty());
let ForecastIntervals { lower, upper, .. } = forecast.intervals.unwrap();
assert!(lower.is_empty());
assert!(upper.is_empty());
}
}