1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
use std::f64::consts::PI;
/// Creates a sine (sinus) wave function for a given frequency.
/// Don't forget to scale up the value to the audio resolution.
/// So far, amplitude is in interval `[-1; 1]`. The parameter
/// of the returned function is the point in time in seconds.
///
/// * `frequency` is in Hertz
pub fn sine_wave(frequency: f64) -> Box<dyn Fn(f64) -> f64> {
Box::new(move |t| (t * frequency * 2.0 * PI).sin())
}
/// See [`sine_wave_audio_data_multiple`]
pub fn sine_wave_audio_data(frequency: f64, sampling_rate: u32, duration_ms: u32) -> Vec<i16> {
sine_wave_audio_data_multiple(&[frequency], sampling_rate, duration_ms)
}
/// Like [`sine_wave_audio_data`] but puts multiple sinus waves on top of each other.
/// Returns a audio signal encoded in 16 bit audio resolution which is the sum of
/// multiple sine waves on top of each other. The amplitudes will be scaled from
/// `[-1; 1]` to `[i16::min_value(); i16::max_value()]`
///
/// * `frequency` frequency in Hz for the sinus wave
/// * `sampling_rate` sampling rate, i.e. 44100Hz
/// * `duration_ms` duration of the audio data in milliseconds
pub fn sine_wave_audio_data_multiple(
frequencies: &[f64],
sampling_rate: u32,
duration_ms: u32,
) -> Vec<i16> {
if frequencies.is_empty() {
return vec![];
}
// Generate all sine wave function
let sine_waves = frequencies
.iter()
.map(|f| sine_wave(*f))
.collect::<Vec<Box<dyn Fn(f64) -> f64>>>();
// How many samples to generate with each sine wave function
let sample_count = (sampling_rate as f64 * (duration_ms as f64 / 1000_f64)) as usize;
// Calculate the final sine wave
let mut sine_wave = Vec::with_capacity(sample_count);
for i_sample in 0..sample_count {
// t: time
let t = (1.0 / sampling_rate as f64) * i_sample as f64;
// BEGIN: add sine waves
let mut acc = 0.0;
for i_sine_wave in 0..sine_waves.len() {
acc += sine_waves[i_sine_wave](t);
}
// END: add sine waves
// BEGIN: scale
// times 0.6 to prevent to harsh clipping if multiple sinus waves are added above each other
let acc = acc * i16::max_value() as f64 * 0.6;
// END: scale
// BEGIN: truncate in interval
let acc = if acc > i16::max_value() as f64 {
i16::max_value()
} else if acc < i16::min_value() as f64 {
i16::min_value()
} else {
acc as i16
};
// END: truncate in interval
sine_wave.push(acc)
}
sine_wave
}