1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Augmented Audio: Audio libraries and applications
// Copyright (c) 2022 Pedro Tacla Yamada
//
// The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

use std::time::Duration;

use rand::rngs::SmallRng;
use rand::seq::SliceRandom;
use rand::{Rng, SeedableRng};

use audio_garbage_collector::{make_shared, Shared};
use audio_processor_traits::parameters::{
    make_handle_ref, AudioProcessorHandleProvider, AudioProcessorHandleRef,
};
use audio_processor_traits::simple_processor::MonoAudioProcessor;
use audio_processor_traits::{AudioBuffer, AudioContext, AudioProcessor};
use augmented_dsp_filters::rbj::{FilterProcessor, FilterType};
use augmented_oscillator::Oscillator;
use generic_handle::GenericHandle;

use crate::MonoDelayProcessor;

use self::mix_matrix::{apply_householder, HadamardMatrix};

mod generic_handle;
mod mix_matrix;

fn flip_polarities(frame: &mut [f32]) {
    for sample in frame {
        *sample = -*sample
    }
}

pub struct ModReverbHandle {}

/// Implements the reverb described by Geraint Luff on:
///
/// * "Let's write a Reverb - ADC21 - https://www.youtube.com/watch?v=6ZK2Goiyotk"
///
/// This is a reverb based on a multi-channel diffuser and delay.
///
/// A low-pass filter is added at the end of the signal, delay times are modulated.
pub struct ModReverbProcessor {
    handle: Shared<ModReverbHandle>,
    diffusers: [Diffuser<8>; 6],
    delay: [MonoDelayProcessor<f32>; 8],
    filter: [FilterProcessor<f32>; 2],
    diffuser_modulator: Oscillator<f32>,
    delay_modulator: Oscillator<f32>,
}

impl AudioProcessorHandleProvider for ModReverbProcessor {
    fn generic_handle(&self) -> AudioProcessorHandleRef {
        make_handle_ref(GenericHandle(self.handle.clone()))
    }
}

impl Default for ModReverbProcessor {
    fn default() -> Self {
        Self {
            handle: make_shared(ModReverbHandle {}),
            diffusers: [
                Diffuser::default(),
                Diffuser::default(),
                Diffuser::default(),
                Diffuser::default(),
                Diffuser::default(),
                Diffuser::default(),
            ],
            delay: [
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
                MonoDelayProcessor::default(),
            ],
            filter: [
                FilterProcessor::new(FilterType::LowPass),
                FilterProcessor::new(FilterType::LowPass),
            ],
            diffuser_modulator: Oscillator::sine(44100.0),
            delay_modulator: Oscillator::sine(44100.0),
        }
    }
}

impl AudioProcessor for ModReverbProcessor {
    type SampleType = f32;

    fn prepare(&mut self, context: &mut AudioContext) {
        let mut max_delay_time = 0.5 / (self.diffusers.len() as f32).powf(2.0);
        for diffuser in self.diffusers.iter_mut() {
            diffuser.max_delay_time = Duration::from_secs_f32(max_delay_time);
            diffuser.prepare(context);
            max_delay_time *= 2.0;
        }

        for delay in &mut self.delay {
            delay.m_prepare(context);
            delay.handle().set_delay_time_secs(0.2);
        }

        self.diffuser_modulator
            .set_sample_rate(context.settings.sample_rate());
        self.diffuser_modulator.set_frequency(1.0);
        self.delay_modulator
            .set_sample_rate(context.settings.sample_rate());
        self.delay_modulator.set_frequency(0.3);

        for filter in &mut self.filter {
            filter.m_prepare(context);
            filter.set_q(1.0);
            filter.set_cutoff(800.0);
        }
    }

    fn process(&mut self, context: &mut AudioContext, data: &mut AudioBuffer<Self::SampleType>) {
        // Last delay line feedback / volume
        let delay_feedback = 0.9;
        let delay_volume = 0.5;
        let delay_time = 0.15;
        // Reverb volume
        let reverb_volume = 0.5;
        // Modulation
        let delay_modulated_amount = 0.0005;
        let diffuser_modulated_amount = 0.0;

        // For each frame
        for sample_num in 0..data.num_samples() {
            // Modulate diffusion delay times
            let diffuser_modulation = self.diffuser_modulator.next_sample(); // -1.0..1.0
            let diffuser_modulation = 1.0 + diffuser_modulation * diffuser_modulated_amount;
            for diffuser in self.diffusers.iter_mut() {
                diffuser.set_delay_mult(diffuser_modulation);
            }
            // Modulate multi-channel delay times
            let delay_modulation = self.delay_modulator.next_sample();
            let delay_modulation = 1.0 + delay_modulation * delay_modulated_amount;
            let delay_duration = delay_time * delay_modulation;
            for delay in &mut self.delay {
                delay.handle().set_delay_time_secs(delay_duration);
            }

            let left = data.channel(0)[sample_num];
            let right = data.channel(1)[sample_num];

            // Generate a 8 channel input signal
            let mut frame8 = [left, right, left, right, left, right, left, right];

            // Run it through a diffusion step
            for diffuser in &mut self.diffusers {
                diffuser.process(context, &mut frame8);
            }

            // Run it through a multi-channel delay line
            let mut delayed = [0.0; 8];
            for (delay, delay_output) in self.delay.iter_mut().zip(&mut delayed) {
                *delay_output = delay.read();
            }

            // Shuffle the channels together
            apply_householder(&mut delayed);

            // Write back into the multi-channel delay line and generate output
            for ((sample, delay), delay_output) in
                frame8.iter_mut().zip(&mut self.delay).zip(delayed)
            {
                delay.write(*sample + delay_output * delay_feedback);
                *sample += delay_output * delay_volume;
            }

            // Mix the multi-channel output back into stereo
            let scale = 1.0 / (self.diffusers.len() as f32);
            let mut reverb_output = [
                (frame8[0] + frame8[2] + frame8[4] + frame8[6]) * scale * reverb_volume,
                (frame8[1] + frame8[3] + frame8[5] + frame8[7]) * scale * reverb_volume,
            ];
            reverb_output[0] = self.filter[0].m_process(context, reverb_output[0]);
            reverb_output[1] = self.filter[1].m_process(context, reverb_output[1]);

            data.channel_mut(0)[sample_num] = reverb_output[0] + left * (1.0 - reverb_volume);
            data.channel_mut(1)[sample_num] = reverb_output[1] + right * (1.0 - reverb_volume);
        }
    }
}

struct Diffuser<const CHANNELS: usize> {
    rng: SmallRng,
    max_delay_time: Duration,
    #[allow(dead_code)]
    shuffle_positions: [usize; CHANNELS],
    mono_delay_processors: [MonoDelayProcessor<f32>; CHANNELS],
    delay_times: [f32; CHANNELS],
    hadamard_matrix: HadamardMatrix<CHANNELS>,
}

impl<const CHANNELS: usize> Default for Diffuser<CHANNELS>
where
    [[f32; CHANNELS]; CHANNELS]: Default,
{
    fn default() -> Self {
        let rng = SmallRng::from_entropy();
        Self::new(rng)
    }
}

impl<const CHANNELS: usize> Diffuser<CHANNELS>
where
    [[f32; CHANNELS]; CHANNELS]: Default,
{
    fn new(mut rng: SmallRng) -> Self {
        let mut shuffle_positions: [usize; CHANNELS] = [0; CHANNELS];
        for (i, shuffle_pos) in shuffle_positions.iter_mut().enumerate().take(CHANNELS) {
            *shuffle_pos = i;
        }
        shuffle_positions.shuffle(&mut rng);

        let mono_delay_processors = [(); CHANNELS].map(|_| MonoDelayProcessor::default());

        Self {
            rng,
            shuffle_positions,
            max_delay_time: Duration::from_secs_f32(0.0_f32),
            mono_delay_processors,
            delay_times: [0.0; CHANNELS],
            hadamard_matrix: HadamardMatrix::new(),
        }
    }

    fn prepare(&mut self, context: &mut AudioContext) {
        let max_delay = self.max_delay_time.as_secs_f32();
        let mut slots: Vec<f32> = (0..self.mono_delay_processors.len())
            .map(|i| 0.003 + i as f32 * (max_delay / (self.mono_delay_processors.len() as f32)))
            .collect();

        for (d, delay_time) in self
            .mono_delay_processors
            .iter_mut()
            .zip(&mut self.delay_times)
        {
            d.m_prepare(context);
            let index = self.rng.gen_range(0..slots.len());
            *delay_time = slots[index];
            slots.remove(index);
            d.handle().set_delay_time_secs(*delay_time);
            d.handle().set_feedback(0.0);
        }
    }

    fn set_delay_mult(&mut self, mult: f32) {
        for (delay, delay_basis) in self.mono_delay_processors.iter_mut().zip(&self.delay_times) {
            delay.handle().set_delay_time_secs(*delay_basis * mult);
        }
    }

    fn process(&mut self, context: &mut AudioContext, frame: &mut [f32; CHANNELS]) {
        for (sample, delay_processor) in frame.iter_mut().zip(&mut self.mono_delay_processors) {
            *sample = delay_processor.m_process(context, *sample);
        }
        flip_polarities(frame);
        self.hadamard_matrix.apply(frame);
    }
}

#[cfg(test)]
mod test {
    use assert_no_alloc::assert_no_alloc;
    use audio_processor_traits::AudioProcessorSettings;

    use super::*;

    #[test]
    fn test_no_alloc_diffuser() {
        let mut diffuser = Diffuser::<8>::default();
        let mut settings = AudioProcessorSettings::default();
        settings.input_channels = 8;
        settings.output_channels = 8;
        let mut context = AudioContext::from(settings);
        diffuser.prepare(&mut context);

        let mut frame = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
        assert_no_alloc(|| {
            diffuser.process(&mut context, &mut frame);
        });
    }
}