1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use std::path::Path;
use std::time::Duration;
use crate::generators::sine_buffer;
use crate::util::rms_level;
use audio_processor_traits::audio_buffer::VecAudioBuffer;
use audio_processor_traits::{AudioBuffer, AudioProcessor, AudioProcessorSettings};
pub use plotters::prelude::*;
struct FrequencyResponseResult {
frequency: f32,
relative_output_level: f32,
}
fn test_frequency_response<Processor>(
sample_rate: f32,
frequency: f32,
audio_processor: &mut Processor,
) -> FrequencyResponseResult
where
Processor: AudioProcessor<SampleType = f32>,
{
let input_buffer = sine_buffer(sample_rate, frequency, Duration::from_millis(50));
let mut input_buffer = VecAudioBuffer::from(input_buffer);
let input_rms = rms_level(input_buffer.slice());
audio_processor.process(&mut input_buffer);
let output_rms = rms_level(input_buffer.slice());
let relative_output_level = output_rms / input_rms;
FrequencyResponseResult {
frequency,
relative_output_level,
}
}
fn get_test_frequencies() -> Vec<f32> {
let mut frequencies = vec![];
let mut start_frequency = 20.0;
for _ in 0..200 {
frequencies.push(start_frequency);
start_frequency += 20.0;
}
frequencies
}
struct FrequencyResponseChartModel {
x_range: (f64, f64),
y_range: (f64, f64),
values: Vec<(f64, f64)>,
}
fn build_frequency_response_chart_model(
responses: Vec<FrequencyResponseResult>,
) -> FrequencyResponseChartModel {
let min_x = 0.0;
let max_x = responses
.iter()
.map(|r| r.frequency as f64)
.fold(-1. / 0., f64::max);
let min_y = 0.0;
let max_y = responses
.iter()
.map(|r| r.relative_output_level as f64)
.fold(-1. / 0., f64::max);
let values = responses
.iter()
.map(|r| (r.frequency as f64, r.relative_output_level as f64))
.collect();
FrequencyResponseChartModel {
x_range: (min_x, max_x),
y_range: (min_y, max_y),
values,
}
}
pub fn generate_frequency_response_plot<Processor>(
filename: &str,
plot_name: &str,
audio_processor: &mut Processor,
) where
Processor: AudioProcessor<SampleType = f32>,
{
let mut settings = AudioProcessorSettings::default();
settings.sample_rate = 22050.0;
settings.input_channels = 1;
settings.output_channels = 1;
audio_processor.prepare(settings);
let sample_rate = settings.sample_rate;
let frequencies = get_test_frequencies();
let responses = frequencies
.iter()
.map(|frequency| test_frequency_response(sample_rate, *frequency, audio_processor))
.collect();
let chart_model = build_frequency_response_chart_model(responses);
let filename = Path::new(filename);
let chart_filename = filename.with_file_name(format!(
"{}--{}.svg",
filename.file_name().unwrap().to_str().unwrap(),
plot_name
));
let svg_backend = SVGBackend::new(&chart_filename, (1000, 1000));
let drawing_area = svg_backend.into_drawing_area();
drawing_area.fill(&WHITE).unwrap();
let mut chart = ChartBuilder::on(&drawing_area)
.caption(plot_name, ("sans-serif", 20))
.set_label_area_size(LabelAreaPosition::Left, 40)
.set_label_area_size(LabelAreaPosition::Bottom, 40)
.build_cartesian_2d(
chart_model.x_range.0..chart_model.x_range.1,
chart_model.y_range.0..chart_model.y_range.1,
)
.unwrap();
chart.configure_mesh().draw().unwrap();
chart
.draw_series(LineSeries::new(chart_model.values, &RED))
.unwrap();
println!(">>> Wrote {} chart to {:?}", plot_name, chart_filename);
}
type SeriesDef = (RGBColor, Vec<f32>);
type MultiSeries = Vec<SeriesDef>;
pub fn draw_vec_chart(filename: &str, plot_name: &str, vec: Vec<f32>) {
draw_multi_vec_charts(filename, plot_name, vec![(RED, vec)])
}
pub fn draw_multi_vec_charts(filename: &str, plot_name: &str, vecs: MultiSeries) {
let (_, vec) = &vecs[0];
let filename = Path::new(filename);
let chart_filename = filename.with_file_name(format!(
"{}--{}.png",
filename.file_name().unwrap().to_str().unwrap(),
plot_name
));
let backend = BitMapBackend::new(&chart_filename, (1000, 200));
let drawing_area = backend.into_drawing_area();
drawing_area.fill(&WHITE).unwrap();
let x_range = (0, vec.len());
let y_range = (
vec.iter().cloned().fold(-1. / 0., f32::max) as f64,
vec.iter().cloned().fold(1. / 0., f32::min) as f64,
);
let mut chart = ChartBuilder::on(&drawing_area)
.caption(plot_name, ("sans-serif", 20))
.set_label_area_size(LabelAreaPosition::Left, 40)
.set_label_area_size(LabelAreaPosition::Bottom, 40)
.build_cartesian_2d(x_range.0..x_range.1, y_range.1..y_range.0)
.unwrap();
chart.configure_mesh().draw().unwrap();
for (color, vec) in vecs {
let values: Vec<(usize, f64)> = vec
.iter()
.enumerate()
.map(|(i, s)| (i, *s as f64))
.collect();
chart.draw_series(LineSeries::new(values, color)).unwrap();
}
}
#[cfg(test)]
mod test {
#[test]
fn it_compiles() {}
}