1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Augmented Audio: Audio libraries and applications
// Copyright (c) 2022 Pedro Tacla Yamada
//
// The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

//! Envelope follower implementation
//!
//! ![](https://raw.githubusercontent.com/yamadapc/augmented-audio/master/crates/augmented/audio/audio-processor-analysis/audio-envelope.png)
//!
//! ## Usage
//! ```
//! use std::time::Duration;
//! use audio_garbage_collector::Shared;
//! use audio_processor_analysis::envelope_follower_processor::{EnvelopeFollowerHandle, EnvelopeFollowerProcessor};
//! use audio_processor_traits::{AudioContext, AudioProcessorSettings, simple_processor::MonoAudioProcessor};
//!
//! let mut envelope_follower = EnvelopeFollowerProcessor::default();
//! let handle: Shared<EnvelopeFollowerHandle> = envelope_follower.handle().clone();
//! handle.set_attack(Duration::from_secs_f32(0.4));
//!
//! let mut context = AudioContext::from(AudioProcessorSettings::default());
//! envelope_follower.m_prepare(&mut context, AudioProcessorSettings::default());
//! envelope_follower.m_process(&mut context, 0.0);
//! ```

use audio_garbage_collector::{make_shared, Shared};
use audio_processor_traits::simple_processor::MonoAudioProcessor;
use audio_processor_traits::{AtomicF32, AudioContext, AudioProcessorSettings};
use std::time::Duration;

fn calculate_multiplier(sample_rate: f32, duration_ms: f32) -> f32 {
    let attack_secs = duration_ms * 0.001;
    let attack_samples = sample_rate * attack_secs;
    (-1.0 / attack_samples).exp2()
}

/// Handle for [`EnvelopeFollowerProcessor`] use this to interact with the processor parameters from
/// any thread.
pub struct EnvelopeFollowerHandle {
    envelope_state: AtomicF32,
    attack_multiplier: AtomicF32,
    release_multiplier: AtomicF32,
    attack_duration_ms: AtomicF32,
    release_duration_ms: AtomicF32,
    sample_rate: AtomicF32,
}

impl EnvelopeFollowerHandle {
    /// Get the current envelope value
    pub fn state(&self) -> f32 {
        self.envelope_state.get()
    }

    /// Set the attack as a `Duration`
    pub fn set_attack(&self, duration: Duration) {
        let duration_ms = duration.as_millis() as f32;
        self.attack_duration_ms.set(duration_ms);
        self.attack_multiplier
            .set(calculate_multiplier(self.sample_rate.get(), duration_ms));
    }

    /// Set the release as a `Duration`
    pub fn set_release(&self, duration: Duration) {
        let duration_ms = duration.as_millis() as f32;
        self.release_duration_ms.set(duration_ms);
        self.release_multiplier
            .set(calculate_multiplier(self.sample_rate.get(), duration_ms));
    }
}

/// An implementation of an envelope follower.
///
/// Implements [`audio_processor_traits::simple_processor::MonoAudioProcessor`]. Can either use it for per-sample
/// processing or wrap this with [`audio_processor_traits::simple_processor::BufferProcessor`].
///
/// # Example
/// ```rust
/// use audio_processor_analysis::envelope_follower_processor::EnvelopeFollowerProcessor;
/// use audio_processor_traits::{AudioContext, AudioProcessorSettings, simple_processor::MonoAudioProcessor};
///
/// let mut  envelope_follower = EnvelopeFollowerProcessor::default();
/// let _handle = envelope_follower.handle(); // can send to another thread
///
/// // Envelope follower implements `MonoAudioProcessor
/// let mut context = AudioContext::from(AudioProcessorSettings::default());
/// envelope_follower.m_prepare(&mut context, Default::default());
/// envelope_follower.m_process(&mut context, 1.0);
/// ```
pub struct EnvelopeFollowerProcessor {
    handle: Shared<EnvelopeFollowerHandle>,
}

impl Default for EnvelopeFollowerProcessor {
    fn default() -> Self {
        Self::new(Duration::from_millis(10), Duration::from_millis(10))
    }
}

impl EnvelopeFollowerProcessor {
    /// Create a new `EnvelopeFollowerProcessor` with this attack and release times.
    pub fn new(attack_duration: Duration, release_duration: Duration) -> Self {
        let sample_rate = AudioProcessorSettings::default().sample_rate;
        EnvelopeFollowerProcessor {
            handle: make_shared(EnvelopeFollowerHandle {
                envelope_state: 0.0.into(),
                attack_multiplier: calculate_multiplier(
                    sample_rate,
                    attack_duration.as_millis() as f32,
                )
                .into(),
                release_multiplier: calculate_multiplier(
                    sample_rate,
                    release_duration.as_millis() as f32,
                )
                .into(),
                attack_duration_ms: (attack_duration.as_millis() as f32).into(),
                release_duration_ms: (release_duration.as_millis() as f32).into(),
                sample_rate: sample_rate.into(),
            }),
        }
    }

    /// Get a reference to the `basedrop::Shared` state handle of this processor
    pub fn handle(&self) -> &Shared<EnvelopeFollowerHandle> {
        &self.handle
    }
}

impl MonoAudioProcessor for EnvelopeFollowerProcessor {
    type SampleType = f32;

    fn m_prepare(&mut self, _context: &mut AudioContext, settings: AudioProcessorSettings) {
        let sample_rate = settings.sample_rate;
        self.handle.sample_rate.set(sample_rate);
        self.handle.attack_multiplier.set(calculate_multiplier(
            sample_rate,
            self.handle.attack_duration_ms.get(),
        ));
        self.handle.release_multiplier.set(calculate_multiplier(
            sample_rate,
            self.handle.release_duration_ms.get(),
        ));
    }

    fn m_process(
        &mut self,
        _context: &mut AudioContext,
        sample: Self::SampleType,
    ) -> Self::SampleType {
        let value = sample.abs();

        let handle = &self.handle;
        let envelope = handle.envelope_state.get();
        let attack = handle.attack_multiplier.get();
        let release = handle.release_multiplier.get();

        if value > envelope {
            handle
                .envelope_state
                .set((1.0 - attack) * value + attack * envelope);
        } else {
            handle
                .envelope_state
                .set((1.0 - release) * value + release * envelope);
        }

        sample
    }
}

#[cfg(test)]
mod test {
    use audio_processor_file::AudioFileProcessor;
    use audio_processor_testing_helpers::charts::draw_vec_chart;
    use audio_processor_testing_helpers::relative_path;
    use audio_processor_traits::audio_buffer::{OwnedAudioBuffer, VecAudioBuffer};
    use audio_processor_traits::{AudioBuffer, AudioProcessor, AudioProcessorSettings};

    use super::*;

    #[test]
    fn test_draw_envelope() {
        let output_path = relative_path!("src/envelope_follower_processor");
        let input_file_path = relative_path!("../../../../input-files/C3-loop.mp3");

        let settings = AudioProcessorSettings::default();
        let mut context = AudioContext::from(settings);
        let mut input = AudioFileProcessor::from_path(
            audio_garbage_collector::handle(),
            settings,
            &input_file_path,
        )
        .unwrap();
        input.prepare(&mut context, settings);

        let mut envelope_follower = EnvelopeFollowerProcessor::default();
        envelope_follower.m_prepare(&mut context, settings);

        let mut buffer = VecAudioBuffer::new();
        buffer.resize(1, settings.block_size(), 0.0);
        let num_chunks = (input.num_samples() / 8) / settings.block_size();

        let mut envelope_readings = vec![];
        for _chunk in 0..num_chunks {
            for sample in buffer.slice_mut() {
                *sample = 0.0;
            }

            input.process(&mut context, &mut buffer);
            for frame in buffer.frames_mut() {
                let sample = frame[0];
                envelope_follower.m_process(&mut context, sample);
                envelope_readings.push(envelope_follower.handle.envelope_state.get());
            }
        }

        draw_vec_chart(&output_path, "Envelope", envelope_readings);
    }
}